Some remarks on filtered polynomial interpolation at Chebyshev nodes
Title | Some remarks on filtered polynomial interpolation at Chebyshev nodes |
Publication Type | Journal Article |
Year of Publication | 2021 |
Authors | Occorsio, D, Themistoclakis, W |
Journal | Dolomites Research Notes on Approximation |
Volume | 14 |
Issue | 2 |
Pagination | 68-84 |
Date Published | 04/2021 |
Publisher | Padova University Press |
Place Published | Padova, IT |
ISSN Number | 20356803 |
Abstract | The present paper concerns filtered de la Vallée Poussin (VP) interpolation at the Chebyshev nodes of the four kinds. This approximation model is interesting for applications because it combines the advantages of the classical Lagrange polynomial approximation (interpolation and polynomial preserving) with the ones of filtered approximation (uniform boundedness of the Lebesgue constants and reduction of the Gibbs phenomenon). Here we focus on some additional features that are useful in the applications of filtered VP interpolation. In particular, we analyze the simultaneous approximation provided by the derivatives of the VP interpolation polynomials. Moreover, we state the uniform boundedness of VP approximation operators in some Sobolev and Hölder–Zygmund spaces where several integro–differential models are uniquely and stably solvable. |
URL | http://ijse.padovauniversitypress.it/2021/2/9 |
DOI | 10.14658/pupj-drna-2021-2-9 |