The numerical solution of Cauchy singular integral equations with additional fixed singularities
Title | The numerical solution of Cauchy singular integral equations with additional fixed singularities |
Publication Type | Journal Article |
Year of Publication | 2021 |
Authors | De Bonis, MC, Laurita, C |
Journal | Dolomites Research Notes on Approximation |
Volume | 14 |
Issue | 2 |
Pagination | 26-38 |
Date Published | 04/2021 |
Publisher | Padova University Press |
Place Published | Padova, IT |
ISSN Number | 20356803 |
Abstract | In this paper we propose a quadrature method for the numerical solution of Cauchy singular integral equations with additional fixed singularities. The unknown function is approximated by a weighted polynomial which is the solution of a finite dimensional equation obtained discretizing the involved integral operators by means of a Gauss-Jacobi quadrature rule. Stability and convergence results for the proposed procedure are proved. Moreover, we prove that the linear systems one has to solve, in order to determine the unknown coefficients of the approximate solutions, are well conditioned. The efficiency of the proposed method is shown through some numerical examples. |
URL | http://ijse.padovauniversitypress.it/2021/2/5 |
DOI | 10.14658/pupj-drna-2021-2-5 |