Download this PDF file Fullscreen Fullscreen Off
References
- Billingsley, Patrick. Convergence of probability measures. John Wiley & Sons, Inc., New York-London-Sydney 1968 xii+253 pp. MR0233396
- Bolthausen, Erwin. A central limit theorem for two-dimensional random walks in random sceneries. Ann. Probab. 17 (1989), no. 1, 108--115. MR0972774
- Y. Gu and G. Bal, Weak convergence approach to a parabolic equation with large, highly oscillatory, random potential, preprint arXiv:1304.5005, (2013).
- Kesten, H.; Spitzer, F. A limit theorem related to a new class of self-similar processes. Z. Wahrsch. Verw. Gebiete 50 (1979), no. 1, 5--25. MR0550121
- Kipnis, C.; Varadhan, S. R. S. Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Comm. Math. Phys. 104 (1986), no. 1, 1--19. MR0834478
- Komorowski, Tomasz; Landim, Claudio; Olla, Stefano. Fluctuations in Markov processes. Time symmetry and martingale approximation. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 345. Springer, Heidelberg, 2012. xviii+491 pp. ISBN: 978-3-642-29879-0 MR2952852
- Lejay, Antoine. Homogenization of divergence-form operators with lower-order terms in random media. Probab. Theory Related Fields 120 (2001), no. 2, 255--276. MR1841330
- Pardoux, Etienne; Piatnitski, Andrey. Homogenization of a singular random one dimensional PDE. Multi scale problems and asymptotic analysis, 291--303, GAKUTO Internat. Ser. Math. Sci. Appl., 24, Gakkōtosho, Tokyo, 2006. MR2233186
- Rémillard, Bruno; Dawson, Donald A. A limit theorem for Brownian motion in a random scenery. Canad. Math. Bull. 34 (1991), no. 3, 385--391. MR1127762
- Sznitman, Alain-Sol. Brownian motion, obstacles and random media. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1998. xvi+353 pp. ISBN: 3-540-64554-3 MR1717054
This work is licensed under a Creative Commons Attribution 3.0 License.