The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off

References

  • Aalen, Odd O.; Røysland, Kjetil; Gran, Jon Michael; Ledergerber, Bruno. Causality, mediation and time: a dynamic viewpoint. J. Roy. Statist. Soc. Ser. A 175 (2012), no. 4, 831--861. MR2993496
  • D. Anderson and T. G. Kurtz, Continuous time Markov chain models for chemical reaction networks, Design and Analysis of Biomolecular Circuits, Springer, Heidelberg, 2011, pp. 3--42.
  • Applebaum, David. Levy processes and stochastic calculus. Second edition. Cambridge Studies in Advanced Mathematics, 116. Cambridge University Press, Cambridge, 2009. xxx+460 pp. ISBN: 978-0-521-73865-1 MR2512800
  • T. Björk, Arbitrage theory in continuous time, Oxford University Press, 2009.
  • Commenges, Daniel; Gegout-Petit, Anne. A general dynamical statistical model with causal interpretation. J. R. Stat. Soc. Ser. B Stat. Methodol. 71 (2009), no. 3, 719--736. MR2749916
  • Comte, F.; Renault, E. Noncausality in continuous time models. Econometric Theory 12 (1996), no. 2, 215--256. MR1395031
  • Dawid, A. P. Causal inference without counterfactuals. With comments and a rejoinder by the author. J. Amer. Statist. Assoc. 95 (2000), no. 450, 407--448. MR1803167
  • Didelez, Vanessa. Graphical models for marked point processes based on local independence. J. R. Stat. Soc. Ser. B Stat. Methodol. 70 (2008), no. 1, 245--264. MR2412641
  • Eichler, Michael. Granger causality and path diagrams for multivariate time series. J. Econometrics 137 (2007), no. 2, 334--353. MR2354948
  • Eichler, Michael. Graphical modelling of multivariate time series. Probab. Theory Related Fields 153 (2012), no. 1-2, 233--268. MR2925574
  • Eichler, Michael; Didelez, Vanessa. On Granger causality and the effect of interventions in time series. Lifetime Data Anal. 16 (2010), no. 1, 3--32. MR2575937
  • A. Gofieau et al., Life with 6000 genes, Science 274 (1996), no. 5287, 546--567.
  • T. R. Hughes et al., Functional discovery via a compendium of expression profiles, Cell 102 (2000), 109--126.
  • Ethier, Stewart N.; Kurtz, Thomas G. Markov processes. Characterization and convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, 1986. x+534 pp. ISBN: 0-471-08186-8 MR0838085
  • Florens, Jean-Pierre; Fougere, Denis. Noncausality in continuous time. Econometrica 64 (1996), no. 5, 1195--1212. MR1403234
  • Gegout-Petit, Anne; Commenges, Daniel. A general definition of influence between stochastic processes. Lifetime Data Anal. 16 (2010), no. 1, 33--44. MR2575938
  • Gill, Jelena B.; Petrović, Ljiljana. Causality and stochastic dynamic systems. SIAM J. Appl. Math. 47 (1987), no. 6, 1361--1366. MR0916245
  • Grubb, Gerd. Distributions and operators. Graduate Texts in Mathematics, 252. Springer, New York, 2009. xii+461 pp. ISBN: 978-0-387-84894-5 MR2453959
  • P. O. Hoyer, D. Janzing, J. M. Mooij, J. Peters, and B. Schölkopf, Nonlinear causal discovery with additive noise models, Advances in Neural Information Processing Systems 21 (NIPS), MIT Press, 2009, pp. 689--696.
  • M. Jacobsen, A brief account of the theory of homogeneous Gaussian diffusions in finite dimensions, Frontiers in Pure and Applied Probability 1, TVP Science Publishers, 1993, pp. 86--94.
  • Jacod, Jean; Shiryaev, Albert N. Limit theorems for stochastic processes. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 288. Springer-Verlag, Berlin, 2003. xx+661 pp. ISBN: 3-540-43932-3 MR1943877
  • M. H. Maathuis, D. Colombo, M. Kalisch, and P. Bühlmann, phPredicting causal effects in large-scale systems from observational data, Nature Methods (2010), no. 4, 247--–248.
  • Maathuis, Marloes H.; Kalisch, Markus; Buhlmann, Peter. Estimating high-dimensional intervention effects from observational data. Ann. Statist. 37 (2009), no. 6A, 3133--3164. MR2549555
  • R. C. Merton, Lifetime portfolio selection under uncertainty: the continuous-time case, Rev. Econ. Stat. 51 (1969), no. 3, 247--257.
  • J. M. Mooij, D. Janzing, and B. Schölkopf, From ordinary differential equations to structural causal models: the deterministic case, Proceedings of the 29th Annual Conference on Uncertainty in Artificial Intelligence (UAI-13), 2013.
  • Pearl, Judea. Causality. Models, reasoning, and inference. Second edition. Cambridge University Press, Cambridge, 2009. xx+464 pp. ISBN: 978-0-521-89560-6; 0-521-77362-8 MR2548166
  • Peters, J.; Buhlmann, P. Identifiability of Gaussian structural equation models with equal error variances. Biometrika 101 (2014), no. 1, 219--228. MR3180667
  • Petrović, Ljiljana; Dimitrijević, Sladjana. Invariance of statistical causality under convergence. Statist. Probab. Lett. 81 (2011), no. 9, 1445--1448. MR2811860
  • Petrović, Ljiljana; Stanojević, Dragana. Statistical causality, extremal measures and weak solutions of stochastic differential equations with driving semimartingales. J. Math. Model. Algorithms 9 (2010), no. 1, 113--128. MR2596243
  • Protter, Philip E. Stochastic integration and differential equations. Second edition. Version 2.1. Corrected third printing. Stochastic Modelling and Applied Probability, 21. Springer-Verlag, Berlin, 2005. xiv+419 pp. ISBN: 3-540-00313-4 MR2273672
  • Rogers, L. C. G.; Williams, David. Diffusions, Markov processes, and martingales. Vol. 1. Foundations. Reprint of the second (1994) edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2000. xx+386 pp. ISBN: 0-521-77594-9 MR1796539
  • Røysland, Kjetil. A martingale approach to continuous-time marginal structural models. Bernoulli 17 (2011), no. 3, 895--915. MR2817610
  • Røysland, Kjetil. Counterfactual analyses with graphical models based on local independence. Ann. Statist. 40 (2012), no. 4, 2162--2194. MR3059080
  • Sato, Ken-iti. Levy processes and infinitely divisible distributions. Translated from the 1990 Japanese original. Revised by the author. Cambridge Studies in Advanced Mathematics, 68. Cambridge University Press, Cambridge, 1999. xii+486 pp. ISBN: 0-521-55302-4 MR1739520
  • Spirtes, Peter; Glymour, Clark; Scheines, Richard. Causation, prediction, and search. Second edition. With additional material by David Heckerman, Christopher Meek, Gregory F. Cooper and Thomas Richardson. Adaptive Computation and Machine Learning. A Bradford Book. MIT Press, Cambridge, MA, 2000. xxii+543 pp. ISBN: 0-262-19440-6 MR1815675
  • T. Verma and J. Pearl, Equivalence and synthesis of causal models, Proceedings of the 6th Annual Conference on Uncertainty in Artificial Intelligence (UAI), Elsevier, 1991, pp. 255--268.
  • Wilkinson, Darren James. Stochastic modelling for systems biology. Chapman & Hall/CRC Mathematical and Computational Biology Series. Chapman & Hall/CRC, Boca Raton, FL, 2006. xxii+254 pp. ISBN: 978-1-58488-540-5; 1-58488-540-8 MR2222876
  • K. Zhang and A. Hyvärinen, On the identifiability of the post-nonlinear causal model, Proceedings of the 25th Annual Conference on Uncertainty in Artificial Intelligence (UAI), Elsevier, 2009, pp. 647--655.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.