The scaling limit of uniform random plane maps, via the Ambjørn–Budd bijection

Jérémie L Bettinelli (Institut Élie Cartan de Lorraine)
Emmanuel Jacob (École Normale Supérieure de Lyon)
Grégory Miermont (École Normale Supérieure de Lyon)

Abstract


We prove that a uniform rooted plane map with n edges converges in distribution after asuitable normalization to the Brownian map for the Gromov–Hausdorff topology. A recent bijection due to Ambjørn and Budd allows to derive this result by a direct coupling with a uniform random quadrangulation with n faces.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-16

Publication Date: August 19, 2014

DOI: 10.1214/EJP.v19-3213

References

  • Ambjørn, Jan; Budd, Timothy G. Trees and spatial topology change in causal dynamical triangulations. J. Phys. A 46 (2013), no. 31, 315201, 33 pp. MR3090757
  • Addario-Berry, Louigi; Albenque, Marie. The scaling limit of random simple triangulations and random simple quadrangulations. Preprint, arXiv:1306.5227, 2013.
  • Abraham, Céline. Rescaled bipartite planar maps converge to the Brownian map. In preparation, 2013.
  • Ambjørn, Jan; Durhuus, Bergfinnur; Jonsson, Thordur. Quantum geometry. A statistical field theory approach. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge, 1997. xiv+363 pp. ISBN: 0-521-46167-7 MR1465433
  • Angel, Omer; Schramm, Oded. Uniform infinite planar triangulations. Comm. Math. Phys. 241 (2003), no. 2-3, 191--213. MR2013797
  • Bouttier, J.; Di Francesco, P.; Guitter, E. Planar maps as labeled mobiles. Electron. J. Combin. 11 (2004), no. 1, Research Paper 69, 27 pp. MR2097335
  • Bouttier, Jérémie; Fusy, Éric; Guitter, Emmanuel. On the two-point function of general planar maps and hypermaps. Preprint, arXiv:1312.0502, 2013.
  • Bouttier, Jérémie; Guitter, Emmanuel. The three-point function of planar quadrangulations. J. Stat. Mech. Theory Exp., 7:P07020, 39, 2008.
  • Chassaing, Philippe; Schaeffer, Gilles. Random planar lattices and integrated superBrownian excursion. Probab. Theory Related Fields 128 (2004), no. 2, 161--212. MR2031225
  • Cori, Robert; Vauquelin, Bernard. Planar maps are well labeled trees. Canad. J. Math. 33 (1981), no. 5, 1023--1042. MR0638363
  • Gromov, Misha. Metric structures for Riemannian and non-Riemannian spaces. Based on the 1981 French original [MR0682063 (85e:53051)]. With appendices by M. Katz, P. Pansu and S. Semmes. Translated from the French by Sean Michael Bates. Progress in Mathematics, 152. Birkhäuser Boston, Inc., Boston, MA, 1999. xx+585 pp. ISBN: 0-8176-3898-9 MR1699320
  • Gao, Zhicheng; Wormald, Nicholas C. The distribution of the maximum vertex degree in random planar maps. J. Combin. Theory Ser. A 89 (2000), no. 2, 201--230. MR1741015
  • Le Gall, Jean-François. The topological structure of scaling limits of large planar maps. Invent. Math. 169 (2007), no. 3, 621--670. MR2336042
  • Le Gall, Jean-François. Geodesics in large planar maps and in the Brownian map. Acta Math. 205 (2010), no. 2, 287--360. MR2746349
  • Le Gall, Jean-François. Uniqueness and universality of the Brownian map. Ann. Probab. 41 (2013), no. 4, 2880--2960. MR3112934
  • Le Gall, Jean-François; Miermont, Grégory. Scaling limits of random trees and planar maps. Probability and statistical physics in two and more dimensions, 155--211, Clay Math. Proc., 15, Amer. Math. Soc., Providence, RI, 2012. MR3025391
  • Le Gall, Jean-François; Weill, Mathilde. Conditioned Brownian trees. Ann. Inst. H. Poincaré Probab. Statist. 42 (2006), no. 4, 455--489. MR2242956
  • Marckert, Jean-François. The rotation correspondence is asymptotically a dilatation. Random Structures Algorithms 24 (2004), no. 2, 118--132. MR2035871
  • Miermont, Grégory. An invariance principle for random planar maps. Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, 39--57, Discrete Math. Theor. Comput. Sci. Proc., AG, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2006. MR2509622
  • Miermont, Grégory. Tessellations of random maps of arbitrary genus. Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), no. 5, 725--781. MR2571957
  • Miermont, Grégory. The Brownian map is the scaling limit of uniform random plane quadrangulations. Acta Math. 210 (2013), no. 2, 319--401. MR3070569
  • Marckert, Jean-François; Mokkadem, Abdelkader. Limit of normalized quadrangulations: the Brownian map. Ann. Probab. 34 (2006), no. 6, 2144--2202. MR2294979
  • Marckert, Jean-François; Miermont, Grégory. Invariance principles for random bipartite planar maps. Ann. Probab. 35 (2007), no. 5, 1642--1705. MR2349571
  • Poulalhon, Dominique; Schaeffer, Gilles. Optimal coding and sampling of triangulations. Algorithmica 46 (2006), no. 3-4, 505--527. MR2291967
  • Schaeffer, Gilles. Conjugaison d'arbres et cartes combinatoires aléatoires. PhD thesis, Université Bordeaux I, 1998.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.