Malliavin matrix of degenerate SDE and gradient estimate

Zhao Dong (Chinese Academy of Sciences)
Xuhui Peng (Hunan Normal University)

Abstract


In this article, we prove that the inverse of Malliavin matrix belongs to $L^p(\Omega,\mathbb{P})$ for a class of degenerate stochastic differential equation (SDE). The conditions required are similar to Hörmander's bracket condition, but we  don't need all coefficients of the SDE are smooth. Furthermore, we obtain a locally uniform estimate for the Malliavin matrix and a gradient estimate. We also prove that the semigroup generated by the SDE is strong Feller. These results are illustrated through examples.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-26

Publication Date: August 15, 2014

DOI: 10.1214/EJP.v19-3120

References

  • Bell, D.R. and Mohammed, S.E.A.: An extension of H\"ormander's theorem for infinitely degenerate second-order operators. Duke Math. J. 78 (1995), no. 3, 453--475. MR1334203
  • Cattiaux, P., Leon, J.R. and Prieur, C.: Estimation for Stochastic Damping Hamiltonian Systems under Partial Observation. phI. Invariant density[J], (2012).
  • Cinti, C., Menozzi, S and Polidoro, S.: Two-sided bounds for degenerate processes with densities supported in subsets of mathbbR^ N. pharXiv:1203.4918, (2012).
  • Da Prato, G. and Zabczyk, J.: Ergodicity for infinite-dimensional systems. London Mathematical Society Lecture Note Series, 229. Cambridge University Press, Cambridge, 1996. xii+339 pp. ISBN: 0-521-57900-7 MR1417491
  • Delarue, F. and Menozzi, S.: Density estimates for a random noise propagating through a chain of differential equations. J. Funct. Anal. 259 (2010), no. 6, 1577--1630. MR2659772
  • Flandoli, Franco.: Dissipativity and invariant measures for stochastic Navier-Stokes equations. NoDEA Nonlinear Differential Equations Appl. 1 (1994), no. 4, 403--423. MR1300150
  • Flandoli, Franco. and Maslowski, Bohdan.: Ergodicity of the $2$-D Navier-Stokes equation under random perturbations. Comm. Math. Phys. 172 (1995), no. 1, 119--141. MR1346374
  • Hairer, Martin and Mattingly, J.C.: Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing. Ann. of Math. (2) 164 (2006), no. 3, 993--1032. MR2259251
  • Hairer, Martin and Mattingly, J.C.: A theory of hypoellipticity and unique ergodicity for semilinear stochastic PDEs. Electron. J. Probab. 16 (2011), no. 23, 658--738. MR2786645
  • Ichihara, Kanji and Kunita, Hiroshi.: A classification of the second order degenerate elliptic operators and its probabilistic characterization. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 30 (1974), 235--254. MR0381007
  • Kliemann, Wolfgang.: Recurrence and invariant measures for degenerate diffusions. Ann. Probab. 15 (1987), no. 2, 690--707. MR0885138
  • Kusuoka, S. and Stroock, D.: Applications of the Malliavin calculus. III. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987), no. 2, 391--442. MR0914028
  • Rey-Bellet, Luc.: Ergodic properties of Markov processes. Open quantum systems. II, 1--39, Lecture Notes in Math., 1881, Springer, Berlin, 2006. MR2248986
  • Mattingly, J.C., Stuart, A.M. and Higham, D.J.: Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise. Stochastic Process. Appl. 101 (2002), no. 2, 185--232. MR1931266
  • Nualart, David.: The Malliavin calculus and related topics. Second edition. Probability and its Applications (New York). Springer-Verlag, Berlin, 2006. xiv+382 pp. ISBN: 978-3-540-28328-7; 3-540-28328-5 MR2200233
  • Protter, P.E.: Stochastic integration and differential equations. Second edition. Version 2.1. Corrected third printing. Stochastic Modelling and Applied Probability, 21. Springer-Verlag, Berlin, 2005. xiv+419 pp. ISBN: 3-540-00313-4 MR2273672
  • Revuz, D. and Yor, M.: Continuous Martingales and Brownian Motion, 3nd ed. Springer, (2005).
  • Shigekawa, Ichiro.: Stochastic analysis. Translated from the 1998 Japanese original by the author. Translations of Mathematical Monographs, 224. Iwanami Series in Modern Mathematics. American Mathematical Society, Providence, RI, 2004. xii+182 pp. ISBN: 0-8218-2626-3 MR2060917
  • Sheu, S.J.: Some estimates of the transition density of a nondegenerate diffusion Markov process. Ann. Probab. 19 (1991), no. 2, 538--561. MR1106275
  • Stettner, Łukasz.: Remarks on ergodic conditions for Markov processes on Polish spaces. Bull. Polish Acad. Sci. Math. 42 (1994), no. 2, 103--114. MR1810695
  • Talay, D.: Stochastic Hamiltonian systems: exponential convergence to the invariant measure, and discretization by the implicit Euler scheme. Inhomogeneous random systems (Cergy-Pontoise, 2001). Markov Process. Related Fields 8 (2002), no. 2, 163--198. MR1924934


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.