ON GENERALIZED FOURIER TRANSFORM FOR
KAUP-KUPERSHMIDT TYPE EQUATIONS∗

TIHOMIR VALCHEV

Institute for Nuclear Research and Nuclear Energy
Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria

Abstract. We develop the Fourier transform interpretation of the inverse scattering method for nonlinear integrable evolution equations associated with a \mathbb{Z}_3 reduced Zakharov-Shabat system for the Lie algebra $\mathfrak{sl}(3, \mathbb{C})$. A simple representative of this integrable hierarchy is the well-known Kaup-Kupershmidt equation. Our results admit a natural extent for nonlinear equations connected to a deeply reduced Zakharov-Shabat system related to an arbitrary simple Lie algebra.

1. Introduction

The Kaup-Kupershmidt equation (KKE) is a $1+1$ nonlinear evolution equation

$$
\partial_t f = \partial_x^5 f + 10 f \partial_x^3 f + 25 \partial_x f \partial_x^2 f + 20 f^2 \partial_x f
$$

where $f \in C^\infty(\mathbb{R}^2)$. It is integrable by means of the inverse scattering method: it is related to a third order spectral problem [11]

$$(\partial_x^3 + 2f \partial_x + \partial_x f)y = \lambda^3 y$$

for some smooth function $y(x, t, \lambda)$. It can be easily transformed into a first order one [5] but related to the algebra $\mathfrak{sl}(3, \mathbb{C})$

$$(i \partial_x + q - \lambda J)\psi = 0, \quad q = \begin{pmatrix} u & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -u \end{pmatrix}, \quad J = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

with some additional symmetries imposed and for an appropriately chosen new dependent variable u. Thus a system of the Caudrey-Beals-Coifman (CBC) type occurs. This is a typical situation when transforming a scalar differential operator