TWISTOR INTEGRAL REPRESENTATIONS OF SOLUTIONS OF THE SUB-LAPLACIAN

YOSHINORI MACHIDA

Numazu College of Technology
3600 Ooka, Numazu-shi
Shizuoka 410-8501, Japan

Abstract. The twistor integral representations of solutions of the Laplacian on the complex space are well-known. The purpose of this article is to generalize the results above to that of the sub-Laplacian on the odd-dimensional complex space with the standard contact structure.

Introduction

The twistor integral representations of solutions of the complex Laplacian on the complex space \mathbb{C}^{2n} of even dimension $2n$ are well-known. We also showed them on \mathbb{C}^{2n-1} of odd dimension $2n - 1$ before. The purpose of this article is to generalize the results above to that of the complex sub-Laplacian on \mathbb{C}^{2n-1} with the standard contact structure. The details and further discussion will appear elsewhere.

Let (x_i, y_i, z) $i = 1, \ldots, n-1$ be the standard coordinate system of $\mathbb{M} = \mathbb{C}^{2n-1}$. We give \mathbb{M} a contact structure defined by

$$\theta = dz - \sum_{i=1}^{n-1} (y_i \, dx_i - x_i \, dy_i)$$

called a contact form. The contact distribution D on \mathbb{M} is defined by $\theta = 0$. The vector fields

$$X_i = \frac{\partial}{\partial x_i} + y_i \frac{\partial}{\partial z}, \quad Y_i = \frac{\partial}{\partial y_i} - x_i \frac{\partial}{\partial z}, \quad i = 1, \ldots, n - 1$$

furnish a basis of D. Let us join $Z = \frac{\partial}{\partial z}$ to them. By $[Y_i, X_i] = 2Z$; $i = 1, \ldots, n - 1$ they form a basis of the Heisenberg algebra.
Let g be a complex sub-Riemannian metric on D such that

$$g(X_i, Y_j) = \delta_{ij},$$
$$g(X_i, X_j) = 0, \quad g(Y_i, Y_j) = 0.$$

Let \mathbb{P} be the set of all totally null affine $(n - 1)$-planes in \mathbb{M} in the sense of the Heisenberg group. The space \mathbb{P} is called the twistor space of \mathbb{M}. Either of the following equations represents a generic element belonging to \mathbb{P}:

$$\mathbb{P}_1 : \left\{ \begin{array}{l}
 y_i = \sum_{j=1}^{n-1} a_{ij} x_j + b_i, \quad a_{ij} = -a_{ji} \quad i = 1, \ldots, n - 1 \\
 z = \sum_{j=1}^{n-1} b_j x_j + c \\
 = \sum_{j=1}^{n-1} x_j y_j + c
\end{array} \right. \quad$$

$$\mathbb{P}_2 : \left\{ \begin{array}{l}
 y_i = \sum_{j=1}^{n-1} a_{ij} x_j + b_i, \quad a_{ij} = -a_{ji} \quad i = 1, \ldots, n - 1 \\
 z = -\sum_{j=1}^{n-1} b_j x_j + c \\
 = -\sum_{j=1}^{n-1} x_j y_j + c
\end{array} \right. \quad$$

Remark that each totally null affine $(n - 1)$-plane is not tangent to D, but the projection to the (x_i, y_i)-space is totally null affine $(n - 1)$-plane in the usual sense. We can take (a_{ij}, b_i, c) as generic parameters of \mathbb{P}. Therefore the dimension of \mathbb{P} is $\frac{n^2 - n + 2}{2}$. By the natural projection $(a_{ij}, b_i, c) \mapsto (a_{ij})$, the (a_{ij})-space is of dimension $\frac{(n - 1)(n - 2)}{2}$.

Let \Box_R, \Box_L and \Box be complex sub-Laplacians associated with g as follows:

$$\Box_R \phi = \left(\sum_{i=1}^{n-1} Y_i X_i \right) \phi$$

$$\Box_L \phi = \left(\sum_{i=1}^{n-1} X_i Y_i \right) \phi$$

$$\Box \phi = (\Box_L + \Box_R) \phi = \sum_{i=1}^{n-1} (X_i Y_i + Y_i X_i) \phi$$
Let \(f = f(a_{ij}, b_i, c) \) be a suitable analytic function on \(\mathbb{P} \). Then we can define a function

\[
\phi(x, y, z) = \int_{\Delta} f(a_{ij}, y_i - \sum_{j=1}^{n-1} a_{ij} x_j, z + \sum_{j=1}^{n-1} x_j y_j) \wedge da_{ij}
\]

where \(b_i = y_i - \sum_{j=1}^{n-1} a_{ij} x_j, c = z + \sum_{j=1}^{n-1} x_j y_j \), and \(\wedge da_{ij} \) is an exterior \(k \)-form by any of \(da_{ij} \) while \(\Delta \) is a \(k \)-chain. The function \(\phi \) on \(\mathbb{M} \) is not necessarily a solution of \(\Box_R, \Box_L, \Box \) for any \(f \).

First, we have the following.

Proposition 1. Take a form \(f = f(a_{ij}, b_i) = f(a_{ij}, b_i, \gamma) \), where \(\gamma \) is a constant. We have \(\phi(x, y, z) = \varphi(x, y) \). Then we have

\[
\Box_R \phi = 0, \quad \Box_L \phi = 0.
\]

These are nothing but the twistor integral representations of solutions of the complex Laplacian on \(\mathbb{C}^{2n-2} \). We call them type 1 and write them as \(f_1 \) and \(\phi_1 \).

Next, we have the following.

Proposition 2. Take a form \(f = f(c) = f(\alpha_{ij}, \beta_i, c) \), where \(\alpha_{ij} \) and \(\beta_i \) are constants. We have \(\phi(x, y, z) = \varphi(z + \sum_{j=1}^{n-1} x_j y_j) \). Then we have

i) for \(\phi = \varphi \left(z - \sum_{j=1}^{n-1} x_j y_j \right) \)

\[
X_i \phi = 0 \ (i = 1, \ldots, n-1), \quad i.e. \quad \Box_R \phi = 0,
\]

ii) for \(\phi = \varphi \left(z + \sum_{j=1}^{n-1} x_j y_j \right) \)

\[
Y_i \phi = 0 \ (i = 1, \ldots, n-1), \quad i.e. \quad \Box_L \phi = 0.
\]

We call them type 2 and write them as \(f_2 \) and \(\phi_2 \).

Combining the above two propositions, we have the following.

Theorem 1. Take a form

\[
f = f(a_{ij}, b_i, c) = f_1(a_{ij}, b_i) + f_2(c) = f_1 + f_2
\]
on \(\mathbb{P}_1 \). We have
\[
\phi(x_i, y_i, z) = \phi_1(x_i, y_i) + \phi_2 \left(z - \sum_{j=1}^{n-1} x_j y_j \right) = \phi_1 + \phi_2
\]

on \(\mathbb{M} \). Then we have
\[
\Box_R \phi = 0.
\]
Conversely, a solution \(\phi \) of \(\Box_R \phi = 0 \) is represented by \(\phi = \phi_1 + \phi_2 \) by some \(f = f_1 + f_2 \). Similarly, from \(f = f_1 + f_2 \) on \(\mathbb{P}_2 \), \(\phi = \phi_1 + \phi_2 \) satisfies \(\Box_L \phi = 0 \).

We embed \((a_{ij}, b_i, c, c')\) into \(\mathbb{P}_0 \times \mathbb{P}_2 \) as \((a_{ij}, b_i, c) \times (a_{ij}, b_i, c')\). Taking a function
\[
F = F(a_{ij}, b_i, c, c') = F(c, c') = (cc')^{-\frac{n-1}{2}}
\]
on \(\mathbb{P}_1 \times \mathbb{P}_2 \), we have
\[
\Phi(x_i, y_i, z) = \text{const} \left(\sum_{i=1}^{n-1} x_i y_i \right)^2 - z^2 \right)^{-\frac{n-1}{2}}.
\]
This is the (complex) fundamental solution of \(\Box \).

References