CHAINABLE SUBCONTINUA

EDWIN DUDA

Abstract. This paper is concerned with conditions under which a metric continuum (a compact connected metric space) contains a non-degenerate chainable continuum.

This paper is concerned with conditions under which a metric continuum (a compact connected metric space) contains a non-degenerate chainable continuum.

By R.H. Bing’s theorem eleven [2] if a metric continuum X contains a non-degenerate subcontinuum H which is hereditarily decomposable, hereditarily unicoherent, and atriodic, then H is chainable.

The following papers give examples of continua with the property that each non-degenerate subcontinuum is not chainable. G.T. Whyburn [16], R.D. Anderson and G. Choquet [1], A. Lelek [6] gives an example of a planar weakly chainable continuum each non-degenerate subcontinuum of which separates the plane and thus contains no non-degenerate chainable subcontinuum. W.T. Ingram [5] gives an example of an hereditarily indecomposable tree-like continuum such that each non-degenerate subcontinuum has positive span and hence is not chainable.

C.E. Burgess in [3] shows if a continuum M is almost chainable and K is a proper subcontinuum of M which contains an endpoint p of M, then K is linearly chainable with p as an end point. A continuum M is almost chainable if, for every positive number ε, there exists an ε-covering G of M and a linear chain $C(L_1, L_2, \ldots, L_n)$ of elements of G such that no L_i $(1 \leq i < n)$ intersects an element of $G - C$ and every point of M is within a distance ε of some element of C. He also shows if M is almost chainable, then M is not a triod and M is unicoherent and irreducible between some two points. Examples show M can contain a triod or a non-unicoherent sub continuum.

If X and Y are metric continua and if X can be ε-mapped onto Y for all positive ε and Y has a non-degenerate chainable continuum then so does X. This result suggests considering inverse limit spaces. At this stage we refer to a result from the paper of S. Mardešić and J. Segal [9] Theorem

2000 Mathematics Subject Classification. 54F20.
Key words and phrases. chainable continuum.
Every \(\pi \)-like continuum \(X \) is the inverse limit of an inverse sequence \(\{P_i; \pi_{ij}\} \) with bonding maps \(\pi_{ij} \) onto and with polyhedra \(P_i \in \pi \). A continuum is \(\pi \)-like if it can be \(\varepsilon \)-mapped onto some polyhedron in \(\pi \) for each positive \(\varepsilon \). E. Duda and P. Krupski \[4\] showed that a \(k \)-junctioned metric continuum, \(k \) a non-negative integer, has at most \(k \) points such that any continuum which contains none of the \(k \) points is chainable. A metric continuum is said to be \(k \)-junctioned if it is the inverse limit of graphs each of which has at most \(k \) branch points, with surjective bonding maps. A continuum is called finitely junctioned if it is \(k \)-junctioned for some non-negative integer \(k \).

Suppose now \(X \) is a tree-like continuum. Then for each \(\varepsilon > 0 \) \(X \) can be mapped onto a tree. By a result quoted above \(X \) is the inverse limit of a sequence of trees with surjective bonding maps. \(X = \lim\leftarrow \{T_n, f_{nm}\} \). Let \(f_n : X \to T_n \) be the standard projection map and let

\[P_n = U \{f_n^{-1}(q) | q \text{ is a branch point}\}. \]

Since \(T_n \) has at most a finite number of branch points (points of order \(\geq 2 \)) \(P_n \) is closed in \(X \). If the union of the \(P_n \) is not dense in \(X \) then \(X \) contains a non-degenerate chainable continuum. Actually it is sufficient that \(\{P_n\} \) have a subsequence whose union is not dense in \(X \).

Let now consider a non-degenerate metric continuum in \(X \) with span equal to zero. The notion of span was defined by A. Lelek \[7\]. In the paper \[8\] he showed continua with span zero are atriodic and tree-like.

There is a series of papers by L.G. Oversteegen and E.D. Tymchatyn which develop properties of spaces with spans equal to zero or sufficient conditions that a space have a span equal to zero \[12, 15, 13, 14\]. Also by L.G. Oversteegen \[11\].

It is interesting to note that a chainable continuum \(X \) can be \(\varepsilon \)-mapped onto any fixed dendrite. Thus for any tree \(T \), by the result of Mardešić and Segal quoted above, \(X \) is the inverse of a sequence of \(T \)'s.

In the paper \[10\] P. Minc shows an inverse limit of trees with simplicial bonding maps having surjective span zero is chainable.

\textbf{References}

University of Miami, Department of Mathematics, PO Box 249085, Coral Gables, FL 33124–4250

E-mail address: e.duda@math.miami.edu