Second Meeting on
Quaternionic Structures
in Mathematics and Physics
Roma, 6-10 September 1999

$Sp(1)^n$-INVARIANT QUATERNIONIC KÄHLER METRIC

TAKASHI NITTA AND TADASHI TANIGUCHI

We study $Sp(1)^n$-invariant hyperKähler or quaternionic Kähler manifolds of real
dimension $4n$. In the case of $n = 1$, Hitchin classified these kinds of metrics associated
with special functions. They are written as

$$g = dt^2 + \sum_{i=1}^{3} f_i(t)\sigma_i^2 \quad \text{on} \quad \mathbb{R} \times Sp(1),$$

where $\sigma_1, \sigma_2, \sigma_3$ are canonical 1-forms associated with $i, j, k \in \mathfrak{sp}(1)$. We obtain a
generalization of the Hitchin’s result ([2]).

Theorem 0.1. Let \mathbb{H} be the Hamilton’s quaternion number field $\mathbb{R} + \mathbb{R}i + \mathbb{R}j + \mathbb{R}k$.
Then \mathbb{H}^n has a natural quaternionic structure I, J, K induced by the action of i, j, k.
Since $\mathbb{H} \setminus \{0\}$ is diffeomorphic to $\mathbb{R} \times Sp(1)$ canonically, $(\mathbb{H} \setminus \{0\})^n$ is diffeomorphic to
$\mathbb{R}^n \times (Sp(1))^n$. We denote the coordinate of \mathbb{R}^n by (t_1, t_2, \ldots, t_n). Let a Riemannian
metric g be written as

$$g = \sum_{i=1}^{n} (dt_i^2 + \sum_{j=1}^{3} f_{ij}(t_1, t_2, \ldots, t_n)\sigma_{ij}^2),$$

where $\sigma_{i1}, \sigma_{i2}, \sigma_{i3}$ are canonical 1-forms associated with $i, j, k \in \mathfrak{sp}(1)$. Then we obtain the following:
(i) If g is hyperKählerian with respect to the quaternionic structure I, J, K, then
each $f_{ij}(t_1, t_2, \ldots, t_n)$ depend only on t_i. Hence the Riemannian metric is an n-times
product of hyperKähler metric obtained by Hitchin.
(ii) If g is quaternionic Kählerian with respect to the quaternionic structure $\mathbb{R} + \mathbb{R}I + \mathbb{R}J + \mathbb{R}K$, then g is hyperKählerian.

By Hitchin, the coefficient functions f_{ij} satisfy

$$\begin{cases}
\frac{df_{i1}}{dt} = 2f_{i2}f_{i3}, \\
\frac{df_{i2}}{dt} = 2f_{i3}f_{i1}, \\
\frac{df_{i3}}{dt} = 2f_{i1}f_{i2}.
\end{cases}$$
These equations imply the first integral
\[
\begin{cases}
 f_{i1} - f_{i2} = a_i, \\
 f_{i1} - f_{i3} = b_i,
\end{cases}
\]
where \(a_i, b_i \) are constant. Associated to \((a_i \neq 0, b_i \neq 0), \) \((a_i = 0, b_i \neq 0) \) and \((a_i = 0, b_i = 0), \) the metric is the type of Belinski-Gibbons-Page-Pope metric, Eguchi-Hanson metric and conformally flat metric.

One of our backgrounds is a natural metric on a moduli space of self-dual connections on \(\mathbb{H} \). It coincides to a framed moduli space of self-dual connections on \(S^4 \). The quaternionic Kähler manifold \(\mathbb{H} \) has an isometry \(Sp(1) \cdot Sp(1) \), that acts on the framed moduli space \(\mathcal{M}_k \) on a Hermitian vector bundle \(V \) of rank 2 with the second Chern class \(k \).

\[
\mathcal{M}_k = \{ \nabla : \text{self - dual connection on } V, c_2(V) = k \}/\text{gauge group}.
\]
The tangent space of \(\mathcal{M}_k \) is represented as the first cohomology of the following elliptic complex:
\[
0 \longrightarrow \text{End}(V) \xrightarrow{\nabla} \text{End}(V) \otimes T^* \mathbb{R}^4 \xrightarrow{pr_+ \circ dV} \text{End}(V) \otimes \wedge_- \longrightarrow 0
\]
where \(\wedge^2 T^* \mathbb{R}^4 \) is decomposed into the self-dual part \(\wedge_+ \) and the anti-self-dual part \(\wedge_- \), \(pr_- : \wedge^2 T^* \mathbb{R}^4 \longrightarrow \wedge_- \) is the natural projection. The tangent space of the moduli space is represented as a subset of \(\text{End}(V) \)-valued 1-forms. The \(L_2 \)-metric of \(\text{End}(V) \)-valued 1-forms induces a Riemannian metric on the moduli space \(\mathcal{M}_k \)
\[
\langle \alpha, \beta \rangle = \int_{\mathbb{R}^4} \text{tr}(\alpha \wedge \beta).
\]

Furthermore the quaternionic structure \(I, J, K \) induces a hyperKählerian structure with respect to the Riemannian metric. It is known that the dimension of \(\mathcal{M}_k \) is \(8k \). These are represented as elements of
\[
\mathcal{M}_{k,k+1}(\mathbb{H}) = \{ (A, B)|A \in M_{k,1}(\mathbb{H}), \ B \in M_{k,k}(\mathbb{H}) \}
\]
by the A.D.H.M. construction. We denote
\[
\mathcal{M}^0_{k,k+1}(\mathbb{H}) = \{ (A, B)|(A, B) \in \mathcal{M}_{k,k+1}(\mathbb{H}), \ \text{tr}(B) = 0 \}.
\]
It corresponds to a hyperKähler submanifold in \(\mathcal{M}_k \), whose dimension is equal to \(8k - 4 \). We denote it by \(\mathcal{M}^0_k \). The conformal group \((Sp(1) \times Sp(1))/\mathbb{Z}_2 \times \mathbb{R}^+ \times \mathbb{H} \) on \(\mathbb{H} \) and the gauge group \(Sp(1)/\mathbb{Z}_2 \) at the infinity act on \(\mathcal{M}^0_k \)
\[
\begin{align*}
 \text{i.} & \quad (q, p) \in (Sp(1) \times Sp(1))/\mathbb{Z}_2, \quad x \mapsto qx^{-1} \quad (A, B) \mapsto (Aq, pB), \\
 \text{ii.} & \quad \lambda \in \mathbb{R}^+, \quad x \mapsto \frac{1}{\lambda} x \quad (A, B) \mapsto (\lambda A, \lambda B), \\
 \text{iii.} & \quad a \in \mathbb{H}, \quad x \mapsto x - a \quad (A, B) \mapsto (A, B + a), \\
 \text{iv.} & \quad r \in Sp(1)/\mathbb{Z}_2, \quad (A, B) \mapsto (rA, B).
\end{align*}
\]
We denote vector fields generated from the action i, ii by \(V_1(\lambda), \ V_2(a) \). Then the norms of \(V_1(\lambda), \ V_2(a) \) are constant on each orbit.
Proposition.

\[\|V_1(\lambda)\|^2 = \lambda^2 C_1 \]
\[\|V_2(a)\|^2 = \sum_{i,j=0}^3 C_{2ij}a_ia_j, \]

where \(C_1, C_2 \) are constant, \(a = a_0 + ia_1 + ja_2 + ka_3 \).

The \(Sp(1) \times \mathbb{R}^+ \) acts on \(\mathcal{M}_k^0 \). The reduced space \(\mathbb{P}(\mathcal{M}_k^0) \) is known to be quaternionic Kählerian ([1]). These are not smooth manifolds, they have singularities. Now in the case \(k = 2 \), \(\mathcal{M}_2^0 \) and \(\mathbb{P}(\mathcal{M}_k^0) \) are examples that are hyperKähler or quaternionic Kähler space of dimension \(4n \) with \(Sp(1)^n \)-symmetry. In fact \(\mathcal{M}_2^0 \) is a hyperKähler space of dimension \(3 \times 4 \) with \((Sp(1) \times Sp(1))/\mathbb{Z}_2 \times Sp(1)/\mathbb{Z}_2 \)-symmetry and \(\mathbb{P}(\mathcal{M}_2^0) \) is a quaternionic Kähler space of dimension \(2 \times 4 \) with \(Sp(1)/\mathbb{Z}_2 \times Sp(1)/\mathbb{Z}_2 \)-symmetry.

References
