REVERSIBLE AJW-ALGEBRAS

Sh. A. Ayupov, F. N. Arzikulov

The main result states that every special AJW-algebra can be decomposed into the direct sum of totally irreversible and reversible subalgebras. In turn, every reversible special AJW-algebra decomposes into a direct sum of two subalgebras, one of which has purely real enveloping real von Neumann algebra, and the second one contains an ideal, whose complexification is a C*-algebra and the annihilator of this complexification in the enveloping C*-algebra of this subalgebra is equal to zero.

Mathematics Subject Classification (2000): 17C65, 46L57.
AJW-algebra, reversible AJW-algebra, AW*-algebra, Enveloping C*-algebra.

1. Introduction

This article is devoted to abstract Jordan operator algebras, which are analogues of abstract W*-algebras (AW*-algebras) of Kaplansky. These Jordan operator algebras can be characterized as a JB-algebra satisfying the following conditions

(1) in the partially ordered set of all projections any subset of pairwise orthogonal projections has the least upper bound in this JB-algebra;

(2) every maximal associative subalgebra of this JB-algebra is generated by it's projections (i.e. coincides with the least closed subalgebra containing all projections of the given subalgebra).

In the articles [3, 4] the second author introduced analogues of annihilators for Jordan algebras and gave algebraic conditions equivalent to (1) and (2). Currently, these JB-algebras are called AJW-algebras or Baer JB-algebras in the literature. Further, in [5] a classification of these algebras has been obtained. It should be noted that many of facts of the theory of JBW-algebras and their proofs hold for AJW-algebras. For example, similar to a JBW-algebra an AJW-algebra is the direct sum of special and purely exceptional Jordan algebras [5].

It is known from the theory of JBW-algebras that every special JBW-algebra can be decomposed into the direct sum of totally irreversible and reversible subalgebras. In turn, every reversible special JBW-algebra decomposes into a direct sum of a subalgebra, which is the hermitian part of a von Neumann algebra and a subalgebra, enveloping real von Neumann algebra of which is purely real [6, 7]. In this paper we prove a similar result for AJW-algebras, the proof of which requires a different approach. Namely, we prove that for every special AJW-algebra A there exist central projections e, f, g ∈ A, e + f + g = 1 such that (1) eA is reversible and there exists a norm-closed two sided ideal I of C*(eA) such that eA = 1+(I_{sa})_+; (2) fA is reversible and R^*(fA) ∩ iR^*(fA) = {0}; (3) gA is a totally nonreversible AJW-algebra.

© 2016 Ayupov Sh. A., Arzikulov F. N.
2. Preliminary Notes

We fix the following terminology and notations.

Let \mathscr{A} be a real Banach $*$-algebra. \mathscr{A} is called a real C*-algebra, if $\mathscr{A}_c = \mathscr{A} + i\mathscr{A} = \{a + ib : a, b \in \mathscr{A}\}$, can be normed to become a (complex) C*-algebra, and keeps the original norm on \mathscr{A} [11].

Let A be a JB-algebra, $P(A)$ be a set of all projections of A. Further we will use the following standard notations:

\begin{align*}
\{aba\} = U_{ab} := 2a(ab) - a^2b, \quad \{abc\} = a(bc) + (ac)b - (ab)c
\end{align*}

and $\{aAb\} = \{acb : c \in A\}$, where $a, b, c \in A$. A JB-algebra A is called an AJW-algebra, if the following conditions hold:

1. In the partially ordered set $P(A)$ of projections any subset of pairwise orthogonal projections has the least upper bound in A;

2. every maximal associative subalgebra A_0 of the algebra A is generated by its projections (i.e. coincides with the least closed subalgebra containing $A_0 \cap P(A)$).

Let

\begin{align*}
(S)^\perp &= \{a \in A : (\forall x \in S) U_a x = 0\}, \\
\perp(S) &= \{x \in A : (\forall a \in S) U_a x = 0\}, \\
\perp(S^\perp) &= \perp(S) \cap A^+_0.
\end{align*}

Then for a JB-algebra A the following conditions are equivalent:

1. A is an AJW-algebra;

2. for every subset $S \subseteq A^+_0$ there exists a projection $e \in A$ such that $(S)^\perp = U_e(A)$;

3. for every subset $S \subseteq A$ there exists a projection $e \in A$ such that $\perp(S^\perp) = U_e(A^+_0)$ [3].

Let A be a real or complex $*$-algebra, and let S be a nonempty subset of A. Then the set $R(S) = \{x \in A : sx = 0 \text{ for all } s \in S\}$ is called the right annihilator of S and the set $L(S) = \{x \in A : xs = 0 \text{ for all } s \in S\}$ is called the left annihilator of S. A $*$-algebra A is called a Baer $*$-algebra, if the right annihilator of any nonempty set $S \subseteq A$ is generated by a projection, i.e. $R(S) = gA$ for some projection $g \in A$ ($g^2 = g = g^*$). If $S = \{a\}$ then the projection $1 - g$ such that $R(S) = gA$ is called the right projection and denoted by $r(a)$. Similarly one can define the left projection $l(a)$. A (real) C*-algebra A, which is a Baer (real) $*$-algebra, is called an (real) AW*-algebra [1, 8]. Real AW*-algebras were introduced and investigated in [1, 2]. In these papers it was shown that for a real AW*-algebra \mathscr{A} the C*-algebra $M = \mathscr{A} + i\mathscr{A}$ is not necessarily a complex AW*-algebra.

Let A be an AJW-algebra. By [5, Theorem 2.3] we have the equality $A = A_I \oplus A_{II} \oplus A_{III}$, where A_I is an AJW-algebra of type I, A_{II} is an AJW-algebra of type II and A_{III} is an AJW-algebra of type III [5]. By [5, Theorem 3.7] A_I, in its turn, is a direct sum of the following form

\begin{align*}
A_I = A_\infty \oplus A_1 \oplus A_2 \oplus \ldots,
\end{align*}

where A_n for every n either is $\{0\}$ or an AJW-algebra of type I_n, A_∞ is a direct sum of AJW-algebras of type I_∞, with a infinite. If $A = A_1 \oplus A_2 \oplus \ldots$ then A is called an AJW-algebra of type I$_{\infty}$ and denoted by $A_{I_{\infty}}$ and if $A = A_{\infty}$ then A is called an AJW-algebra of type I_{∞} and denoted by $A_{I_{\infty}}$. We say that A is properly infinite if A has no nonzero central modular projection. The fact that an AJW-algebra A_{II} of type II is a JC-algebra can be proved similar to JJB-algebras [9]. Therefore, it is isomorphic to some AJW-algebra defined in [14] (i.e. to some AJW-algebra of self-adjoint operators), and by virtue of [14] $A_{II} = A_{II} \oplus A_{II_{\infty}}$, where A_{II} is a modular AJW-algebra of type II and $A_{II_{\infty}}$ is an AJW-algebra of type II, which is properly infinite. So, we have the decomposition

\begin{align*}
A = A_{I_{\infty}} \oplus A_{I_{\infty}} \oplus A_{II_{\infty}} \oplus A_{II_{\infty}} \oplus A_{II_{\infty}}.
\end{align*}
Reversible AJW-algebras

It is easy to verify that the part \(A_{f_{fin}} \oplus A_{II_1} \) is modular, and \(A_{f_{\infty}} \oplus A_{II_{\infty}} \oplus A_{III} \) is properly infinite (i.e. properly nonmodular).

3. Reversibility of AJW-algebras

Let \(A \) be a special AJW-algebra on a complex Hilbert space \(H \). By \(R^*(A) \) we denote the uniformly closed real \(* \)-algebra in \(B(H) \), generated by \(A \), and by \(C^*(A) \) the \(C^* \)-algebra, generated by \(A \). Thus the set of elements of kind

\[
\sum_{i=1}^{n} \prod_{j=1}^{m_i} a_{ij} \quad (a_{ij} \in A)
\]

is uniformly dense in \(R^*(A) \). Let \(iR^*(A) \) be the set of elements of kind \(ia, a \in R^*(A) \). Then

\[
C^*(A) = R^*(A) + iR^*(A) \quad [7, 13].
\]

Lemma 3.1. The set \(R^*(A) \cap iR^*(A) \) is a uniformly closed two sided ideal in \(C^*(A) \).

\(< \) If \(a, b \in R^*(A) \) and \(c = id \in R^*(A) \cap iR^*(A) \), then \((a+ib)c = ac + ibid = ac - bd \in R^*(A) \). Similarly \((a+ib)c \in iR^*(A) \), i.e. \((a+ib)c \in R^*(A) \cap iR^*(A) \). Since \(R^*(A) \cap iR^*(A) \) is uniformly closed and the set of elements of kind \(a \in R^*(A) \), \(b \in A \) is uniformly dense in \(C^*(A) \), we have \(R^*(A) \cap iR^*(A) \) is a left ideal in \(C^*(A) \). By the symmetry \(R^*(A) \cap iR^*(A) \) is a right ideal. \(\triangleright \)

Let \(R \) be a \(* \)-algebra, \(R_{sa} \) be the set of all self-adjoint elements of \(R \), i.e. \(R_{sa} = \{ a \in R : a^* = a \} \).

Definition 3.2. A JC-algebra \(A \) is said to be reversible if \(a_1a_2 \ldots a_n + a_na_{n-1} \ldots a_1 \in A \) for all \(a_1, a_2, \ldots, a_n \in A \).

Similar to JW-algebras we have the following criterion.

Lemma 3.3. An AJW-algebra \(A \) is reversible if and only if \(A = R^*(A)_{sa} \).

\(< \) It is clear that, if \(A = R^*(A)_{sa} \), then \(A \) is reversible since

\[
\left(\prod_{i=1}^{n} a_i + \prod_{i=1}^{n} a_i \right)^* = \prod_{i=1}^{n} a_i + \prod_{i=1}^{n} a_i \in R^*(A)_{sa} = A,
\]

for all \(a_1, a_2, \ldots, a_n \in A \). Conversely, let \(A \) be a reversible AJW-algebra. The inclusion \(A \subset R^*(A)_{sa} \) is evident. If \(a = \sum_{i=1}^{n} \prod_{j=1}^{m_i} a_{ij} \in R^*(A)_{sa} \), then

\[
a = \frac{1}{2}(a + a^*) = \frac{1}{2} \sum_{i=1}^{n} \left(\prod_{j=1}^{m_i} a_{ij} + \prod_{j=1}^{m_i} a_{ij} \right) \in A.
\]

Hence the converse inclusion holds, i.e. \(R^*(A)_{sa} = A \). \(\triangleright \)

Lemma 3.4. Let \(A \) be an AJW-algebra and let \(I \) be a norm-closed ideal of \(A \). Then there exists a central projection \(g \) such that \(\dagger(\dagger(I_{sa})_+) = gA_+ \).

\(< \) Since \(A \) is an AJW-algebra there exists a projection \(g \) in \(A \) such that

\[
\dagger(I_{sa})_+ = U_{(1-g)}(A_+), \quad \dagger(\dagger(I_{sa})_+) = U_g(A_+),
\]

where \(\dagger(S)_+ = \{ x \in A_+ : (\forall a \in S) U_a x = 0 \} \) for \(S \subset A \).

Let \((a_\lambda) \) be an approximate identity of the JB-subalgebra \(I \) and \(a \) be an arbitrary positive element in \(I \). Then there exists a maximal associative subalgebra \(A_o \) of \(A \) containing \(a \). Let
v_μ be an approximate identity of A_ν. Then $(v_\mu) \subseteq (u_\lambda)$ and $\|av_\mu - a\| \to 0$. Let $b \in A_+$ and $U_\nu b = 0$ for every μ. Then $U_{\lambda}U_\nu b = U_{\lambda}U_\nu b = 0$ and $U_\nu U_{\lambda}U_\nu b = 0$, where c is an element in A such that $b = c^2$. Hence $U_\lambda U_{\lambda}U_\nu c^2 = 0$, $(U_\lambda U_{\lambda}U_\nu c)^2 = 0$, $U_\lambda U_{\lambda}U_\nu c = 0$ and $U_\lambda U_{\lambda}U_\nu c = U_\lambda U_\nu c = 0$ for every μ. We have

$$\|U_\lambda U_\nu c - U_\lambda a\| = \|U_\lambda U_\nu c - a\| \to 0$$

because $\|av_\mu - a\| \to 0$ and the operator U_λ is norm-continuous. Hence $U_\lambda a = 0$. We may assume that $a = d^2$ for some element $d \in A$. Then

$$U_d U_\lambda a = U_d U_\lambda d^2 = (U_d b)^2 = 0, \quad U_d b = 0.$$

Thus $U_d U_\lambda b = U_d b = 0$. Therefore, if $b \in (u_\lambda)_+$ then $b \in (I_{sa})_+$. Hence $\left(\left(\left(u_\lambda\right)_+\right)_+\right) \subseteq \left(\left(I_{sa}\right)_+\right)_+$. It is clear that $\left(\left(I_{sa}\right)_+\right) \subseteq \left(\left(u_\lambda\right)_+\right)_+$ and

$$\left(\left(I_{sa}\right)_+\right) = \left(\left(u_\lambda\right)_+\right).$$

This implies that $\left(\left((u_\lambda)\right)_+\right) = U_{1-g}(A_+)$ and

$$\sup_{\lambda} u_\lambda = g.$$

Let us prove that $U_g(A)$ is an ideal of A. Indeed, let x be an arbitrary element in A. Then $U_x u_\lambda \in I_{sa}$, i.e. $U_x u_\lambda \in U_g(A)$. By [9, Proposition 3.3.6] and the proof of [9, Lemma 4.1.5] we have U_x is a normal operator in A. Hence

$$\sup_{\lambda} u_\lambda \in U_g(A).$$

At the same time

$$\sup_{\lambda} u_\lambda \in U_g(A).$$

Hence $U_x g \in U_g(A)$. By [9, 2.3.10] we have

$$A(\lambda x)^2 = 2gU_x g + U_x g^2 + U_x g^2 = 2gU_x g + U_x g + U_g x^2.$$
Lemma 3.6. Let A be an AJW-algebra and let J be the set of elements $a \in A$ such that $bac + c^*ab^* \in A$ for all $b, c \in C^*(A)$. Then J is a norm-closed ideal in A. Moreover J is a reversible AJW-algebra.

\(\triangleleft\) Let $a, b \in J$, $s, t \in C^*(A)$. Then
\[
s(a + b)t + t^*(a + b)s^* = (sat + t^*as^*) + (sbt + t^*bs^*) \in A,
\]
i.e. J is a linear subspace of A. Now, if $a \in J$, $b \in A$, $s, t \in C^*(A)$, then
\[
s(ab + ba)t + t^*(ab + ba)s^* = (sa(bt) + (bt)^*as^*) + ((sb)at + t^*a(sb)^*) \in A,
\]
i.e. J is a norm-closed ideal of A.

Let $a_1 \in J$, $a_2, \ldots, a_n \in A$ and $a = \prod_{i=2}^{n} a_i$. Then $a_1a + a^*a_1 \in A$ by the definition of J. Let us show that $a_1a + a^*a_1 \in J$; then, in particular, in the case of $a_2, \ldots, a_n \in J$ this will imply that J is reversible. For all $b, c \in C^*(A)$ we have
\[
b(a_1a + a^*a_1)c + c^*(a_1a + a^*a_1)b^* = (b(a_1ac) + (ac)^*a_1b^*) + ((ba^*)a_1c + c^*a_1(ba^*)^*) \in A,
\]
i.e. $a_1a + a^*a_1 \in J$. \(\triangleright\)

Definition 3.7. An AJW-algebra A is said to be totally nonreversible, if the ideal J in Lemma 3.6 is equal to $\{0\}$, i.e. $J = \{0\}$.

Theorem 3.8. Let A be a special AJW-algebra. Then there exist central projections $e, f, g \in A$, $e + f + g = 1$ such that

1. $J = (e + f)A$, J is the ideal from Lemma 3.6;
2. eA is reversible and there exists a norm-closed two sided ideal I of $C^*(eA)$ such that $eA = \frac{1}{2}((I_{ea})_+) +$;
3. fA is reversible and $R^*(fA) \cap iR^*(fA) = \{0\}$;
4. gA is a totally nonreversible AJW-algebra and
\[
gA = \sum_{\omega \in \Omega} C(Q_{\omega}, R \oplus H_{\omega}),
\]
where Ω is a set of indices, $\{Q_{\omega}\}_{\omega \in \Omega}$ is an appropriate family of extremal compacts and $\{H_{\omega}\}_{\omega \in \Omega}$ is a family of Hilbert spaces.

\(\triangleleft\) We have
\[
A = A_1 \oplus A_2 \oplus \cdots \oplus A_{I_{\infty}} \oplus A_{II_1} \oplus A_{II_{\infty}} \oplus A_{III}
\]
and the subalgebra (without the part A_2)
\[
A_1 \oplus A_3 \oplus A_4 \oplus \cdots \oplus A_{I_{\infty}} \oplus A_{II_1} \oplus A_{II_{\infty}} \oplus A_{III}
\]
is reversible. The last statement can be proven similar to [9, Theorem 5.3.10]. By [10] the subalgebra A_2 can be represented as follows
\[
A_2 = \sum_{i \in \Xi} C(X_i, R \oplus H_i),
\]
where Ξ is a set of indices, $\{X_i\}_{i \in \Xi}$ is a family of extremal compacts and $\{H_i\}_{i \in \Xi}$ is a family of Hilbert spaces. Hence by [9, Theorem 6.2.5] there exist central projections h_i g such that $A = hA \oplus gA$, hA is reversible and gA is totally nonreversible. For all $a, b_1, \ldots, b_n, c_1, \ldots, c_m$ in hA we have
\[
b_1 \ldots b_nac_1 \ldots c_m + c_m^*c_{m-1} \ldots c_1ab_n b_{n-1} \ldots b_1 \in hA
\]
since hA is reversible. Similarly for all $b, c \in R^*(hA), a \in hA$ we have

$$bac + c^*ab^* \in hA.$$

Hence $hA = J$.

By Proposition 3.5 there exist two central projections e, f in hA and a norm-closed two sided ideal I of $C^*(hA)$ such that $e + f = h$, $eA = \frac{1}{2}(I_{sa} + I_{sa})$, fA is a reversible AJW-algebra and $R^*(fA) \cap iR^*(fA) = \{0\}$. This completes the proof.

Let A be a special AJW-algebra. Despite the fact that for the real AW*-algebra $R^*(A)$ the C*-algebra $\mathcal{M} = R^*(A) + iR^*(A)$ is not necessarily a complex AW*-algebra we consider, that

CONJECTURE. Under the conditions of Theorem 3.8 the following equality is valid

$$ea = I_{sa}.$$

References

Received September 24, 2015.

AYUPOV SHAVKAT ABDULLAYEVICH
National University of Uzbekistan,
Director of the Institute of Math.
Do‘rmon yo‘li st., Tashkent, 1000125, Uzbekistan
Email: sh_ayupov@mail.ru

ARIZIKULOV FARHODJON NEMATIONOVICH
Andijan State University,
Department of Mathematics, Faculty of Science
University street, Andijan, 710020, Uzbekistan
Email: arzikulovf@moodle.uz
ОБРАТИМЫЕ AJW-АЛГЕБРЫ

Аюнов Ш. А., Арзикудов Ф. Н.

Основной результат статьи гласит, что каждая специальная AJW-алгебра раскладывается в прямую сумму тотально неображимой и обратимой подалгебр. В свою очередь, каждая обратимая AJW-алгебра раскладывается в прямую сумму подалгебры, которая содержит идеал такой, что аннулятор комплексификации этого идеала в обертывающей C*-алгебре этой подалгебры равен нулю и подалгебры, обертывающая вещественная алгебра фон Неймана которой является чисто вещественной.

Ключевые слова: AJW-алгебра, обратимая AJW-алгебра, AW*-алгебра, обертывающая *-алгебра.