#
Witt vectors and truncation posets

##
Vigleik Angeltveit

One way to define Witt vectors starts with a truncation set $S \subset N$.
We generalize Witt vectors to truncation posets, and show how three types
of maps of truncation posets can be used to encode the following six
structure maps on Witt vectors: addition, multiplication, restriction,
Frobenius, Verschiebung and norm.

Keywords:
Witt vectors, truncation posets, Tambara functors

2010 MSC:
13F35

*Theory and Applications of Categories,*
Vol. 32, 2017,
No. 8, pp 258-285.

Published 2017-02-10.

http://www.tac.mta.ca/tac/volumes/32/8/32-08.pdf

TAC Home