Surveys in Mathematics and its Applications

ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 13 (2018), 121 -- 129

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Mohammad Fozouni

Abstract. Let A be a Banach algebra, X be a Banach left A-module and n ≥ 2 be an integer. A bounded linear operator T: A → X is called an n-Jordan multiplier if for each a ∈ A, T(an)=a· T(an-1). In this paper we investigate this notion and give some illuminating examples. Also, we give an approximate local version of n-Jordan multipliers and try to investigate when an approximate local n-Jordan multiplier is an n-Jordan multiplier. Finally, for functional Banach algebras we give a characterization of n-Jordan multipliers.

2010 Mathematics Subject Classification: 46H05; 42A45
Keywords: Banach algebra; Banach module; multiplier; Jordan multiplier

Full text


  1. J. B. Conway, A Course in Operator Theory, Graduate studies in mathematics, Volume 21, AMS. 1999. MR1721402. Zbl 0936.47001.

  2. H. G. Dales, Banach Algebras and Automatic Continuity, Clarendon press, Oxford, 2000. MR1816726. Zbl 0981.46043.

  3. M. E. Gordji, n-Jordan homomorphisms, Bull. Aust. Math. Soc., 80. 01 (2009), 159--164. MR2520532. Zbl 1177.47046.

  4. Sh. Hejazian, M. Mirzavaziri and M. S. Moslehian, n-homomorphisms, Bull. Iranian Math. Soc., 31 (2005), No. 1, 13--23. MR2228453. Zbl 1121.47028.

  5. S. Helgason, Multipliers of Banach algebras, Ann. Maths., 64 (1956), 240--254. MR82075. Zbl 0072.32303.

  6. A. R. Khoddami, Strongly zero-product preserving maps on normed algebras induced by a bounded linear functional, Khayyam J. Math., 1 (2015), no. 1, 107--114. MR3353480. Zbl 1352.46047.

  7. J. Laali, M. Fozouni, n-multipliers and their relations with n-homomorphisms, Vietnam J. Math., (2017) 45: 451--457. MR3669151. Zbl 1381.46038.

  8. J. Laali, M. Fozouni, Some properties of functional Banach algebra, Facta Univ. Ser. Math. Inform., Vol. 28, No. 2 (2013), 189–196. MR3118917. Zbl 1324.46058.

  9. E. Samei, Approximately local derivations, J. London Math. Soc., (2) 71 (2005), 759--778. MR2132382. Zbl 1072.47033.

  10. J. K. Wang, Multipliers of commutative Banach algebras, Pacific J. Math., (1961), 1131--1149. MR138014. Zbl 0127.33302.

  11. B. Zalar, On centralizers of semiprime rings. Comment. Math. Univ. Carol., 32 (1991), 609--614. MR1159807. Zbl 0746.16011.

  12. W. Zelazko, A characterization of multiplicative linear functionals in complex Banach algebras. Studia math., 30 (1968), 83--85. MR229042. Zbl 0162.18504.

Mohammad Fozouni
Department of Mathematics and Statistics
Faculty of Basic Sciences & Engineering,
Gonbad Kavous University, Golestan, Iran.