Surveys in Mathematics and its Applications

ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 12 (2017), 193 -- 201

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


D.L. Suthar and Belete Debalkie

Abstract. The present article is devoted to evaluate new integral relations involving the ℵ-functions. The results are expressed in the terms of the Psi functions. Being unified and general in nature, these integrals yield a number of known and new results as special cases. For the sake of illustration, six cases are also recorded here as special case of our main results.

2010 Mathematics Subject Classification: 33C45; 33C60.
Keywords: ℵ-function; Psi (or digamma) functions ψ(z).

Full text


  1. P. Agarwal and S. Jain, New integral formulas involving polynomials and `I-function, J. Appl. Math. Stat. Inform., 8(2012), 79-88. MR1799683. Zbl 1277.33014.

  2. P. Agarwal, S. Jain and M. Chand, On integrals involving product of H and the generalized polynomials. Int. Math. forum, 6(2011), 529-539. MR2786581.

  3. V.B.L. Chaurasia and Y. Singh, New generalization of integral equations of fredholm type using Aleph function, Int. J. of Modern Math. Sci., 9(3)(2014), 208-220.

  4. C. Fox, The G and H-functions as symmetrical Fourier kernels, Trans Amer. Math. Soc., 98(1961), 385-429. MR0131578. Zbl 0096.30804.

  5. I.S. Gradshteyan and I.M. Ryzhik : Tables of Integrals, Academic Press, New York, (1980). MR0669666.

  6. S. Jain and P. Agarwal, A new class of integral relations involving a general class of polynomials and I-functions, Walailak J. Sci. & Tech., 12(11)(2015), 1009-1018. MR0669666.

  7. A.A. Kilbas and M. Saigo,: H-Transforms: Theory and Application, Analytical Methods and Special Functions, 9 Chapman & Hall / CRC Press, Boca Raton, FL, (2004). MR2041257. Zbl 1056.44001.

  8. A.M. Mathai, R.K. Saxena and H.J. Haubold, The H-function: Theory and Applications, Springer, New York, (2010). MR2562766. Zbl 1181.33001.

  9. A.P. Prudnikov, Yu.A. Brychkov and O.I. Marichev, Integrals and Series, More Special Functions, 3, Gordon and Breach Science Publishers, New York, (1990). MR1054647.

  10. V.P. Saxena, Formal solution of certain new pair of dual integral equations involving H-functions, Proc. Nat. Acad. Sci. India Sect., A 52(1982), 366-375. MR0757162. Zbl 0535.45001.

  11. R.K. Saxena and T.K. Pogány, Mathieu-type series for the \aleph -function occurring in Fokker-Planck equation, Eur. J. Pure Appl. Math., 3(6)(2010), 980-988. MR2749545. Zbl 1216.33017.

  12. R.K. Saxena and T.K. Pogány, On fractional integration formulae for Aleph functions, Appl. Math. Comput., 218(2011), 985-990. MR2831343. Zbl 1242.33021.

  13. H.M. Srivastava, K.C. Gupta and S.P. Goyal, The H-Functions of One and Two Variables with Applications, South Asian Pvt. Ltd., New Delhi, (1982). MR0691138.

  14. N. S\ddotudland, B. Baumann and T.F. Nannenmacher, Open problem: Who knows about the \aleph -function?, Appl. Anal., 1(4)(1998), 401-402.

  15. N. S\ddotudland, B. Baumann and T.F. Nannenmacher, Fractional driftless Fokker-Planck equation with power law diffusion coefficients, in V.G. Gangha, E.W. Mayr, W.G. Vorozhtsov (Eds.), Computer Algebra in Scientific Computing (CASC Konstanz 2001), Springer, Berlin, (2001), 513-525. MR1942083. Zbl 1044.82011.

  16. D.L. Suthar, H. Haile and T. Hagos, Integrals involving Aleph function and Wright's generalized hypergeometric function, Int. J. Adv. Res. Math. Appl., 10(3)(2017), 20-26.

D.L. Suthar,
Department of Mathematics,
Wollo University, Dessie,
P.O. Box: 1145, South Wollo, Amhara Region, (Ethiopia).

Belete Debalkie,
Department of Mathematics,
Wollo University, Dessie,
P.O. Box: 1145, South Wollo, Amhara Region, (Ethiopia).