ST property">

Surveys in Mathematics and its Applications

ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 11 (2016), 21 -- 31

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Anita Tomar, Giniswamy, C. Jeyanthi, P. G. Maheshwari

Abstract. The aim of this paper is to establish the existence of coincidence and common fixed point of F-contractions via CLRST property. Our results generalize, extend and improve the results of Wardowski [D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory and Applications (2012) 2012:94, 6 pages, doi: 10.1186/1687-1812-2012-94], Batra et al. [Coincidence Point Theorem for a New Type of Contraction on Metric Spaces, Int. Journal of Math. Analysis, Vol. 8(27) 2014, 1315-1320] and others existing in literature. Examples are also given in support of our results.

2010 Mathematics Subject Classification: 47H10; 54H25
Keywords: Common fixed point, common limit range property, F-contraction, weakly compatible maps.

Full text


  1. S. Banach, Sur les ope'rations dansles ensembles abstraits et leur application aux e'quationsint e'grales, Fundamenta Mathematicae, 3 (1922), 133-181. JFM 48.0201.01.

  2. S. K. Chatterjea, Fixed point theorems, Comptes Rendus de l'Academie Bulgare des Sciences, 25(1972), 727-730. MR0324493. Zbl 0274.54033.

  3. L. B. Ciric, A generalization of Banach's contraction principle, Proc. Am. Math. Soc. 45(2)(1974), 267-273. MR0356011. Zbl 0291.54056.

  4. M. Imdad, B. O. Pant, S. Chauhan, Fixed point theorems in Menger spaces using the (CLRST) property and applications, J. Nonlinear Anal. Optim., 3(2) (2012), 225-237. MR2982410.

  5. Monica Cosentino and Pasquale Vetro, Fixed point results for F-contractive mappings of Hardy-Rogers-type, Filomat, 28:4 (2014), 715-722, DOI 10.2298/ FIL1404715C. MR3360064.

  6. G. E. Hardy and T. D. Rogers, A generalization of a fixed point theorem of Reich, Canad. Math. Bull., 16(1973), 201-206. MR0324495. Zbl 0266.54015.

  7. G. Jungck, Compatible mappings and common fixed points, Inter. J. Math. Math. Sci., 9 (1986), 771-779. MR0870534. Zbl 0613.54029.

  8. G. Jungck and B. E. Rhoades, Fixed point for set valued functions without continuity, Indian J. Pure Appl. Math., 29 (1998), 227-238. MR1617919. Zbl 0904.54034.

  9. R. Kannan, Some results on fixed points, Bull. Cal. Math. Soc., 60(1968), 71-76. MR0257837. Zbl 0209.27104.

  10. S.K. Malhotra, Stojan Radenovic and Satish Shukla, Some fixed point results without monotone property in partially ordered metric-like spaces, J. Egyptian Math. Soc., 22 (2014), 83-89. MR3168597. Zbl 1293.54029.

  11. G. Minak, A. Helvac, and I. Altun, Ciric type generalized F- contractions on complete metric spaces and fixed point results, Filomat 28:6 (2014), 1143-1151, DOI.10.2298/FIL1406143M. MR3360088.

  12. Hossein Piri and Poom Kumam, Some fixed point theorems concerning F-contraction in complete metric spaces, Fixed Point Theory and Appl. 2014, (2014) 210. MR3357360.

  13. Rakesh Batra, Sachin Vashistha and Rajesh Kumar, Coincidence Point Theorem for a New Type of Contraction on Metric Spaces, Int. J. Math. Anal., 8( 2014) no. 27, 1315-1320

  14. S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull. 14(1) (1971), 121-124. 878730. MR0292057. Zbl 0211.26002.

  15. Satish Shukla and Stojan Radenovic, Some common fixed point theorems for F-contraction type mappings in 0-complete partial metric spaces, J. Math., 2013(2013), Article ID 878730, 7 pages, doi: 10.1155/ 2013/ 878730. MR3100741. Zbl 1268.54035.

  16. W. Sintunavarat and P. Kumam, Common fixed point theorems for a pair of weakly compatible mappings in fuzzy metric spaces, J. Appl. Math., (2011), 1-14. MR2822403. Zbl 1226.54061.

  17. D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory and Appl., 94(2012), 6 pages, doi: 10.1186/1687-1812-2012-94. MR2949666. Zbl 1310.54074.

  18. D. Wardowski and N. Van Dung, Fixed points of F-weak contractions on complete metric spaces, Demons. Math., 47(1) (2014), 146-155. MR3200192. Zbl 1287.54046.

Anita Tomar,
Government P.G. College, Dakpathar(Dehradun), India.

P. E. S College of Science, Arts and Commerce, Mandya, India.

C. Jeyanthi,
Teresian College, Mysore.

P. G. Maheshwari,
Government First Grade College, Vijayanagara, Bangalore.