### Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 20 (2024), 040, 30 pages      arXiv:2205.13912      https://doi.org/10.3842/SIGMA.2024.040

### Co-Axial Metrics on the Sphere and Algebraic Numbers

Zhijie Chen a, Chang-Shou Lin b and Yifan Yang c
a) Department of Mathematical Sciences, Yau Mathematical Sciences Center, Tsinghua University, Beijing, 100084, P. R. China
b) Department of Mathematics, National Taiwan University, Taipei 10617, Taiwan
c) Department of Mathematics, National Taiwan University and National Center for Theoretical Sciences, Taipei 10617, Taiwan

Received November 07, 2023, in final form May 09, 2024; Published online May 20, 2024

Abstract
In this paper, we consider the following curvature equation $$\Delta u+{\rm e}^u=4\pi\biggl((\theta_0-1)\delta_0+(\theta_1-1)\delta_1 +\sum_{j=1}^{n+m}\bigl(\theta_j'-1\bigr)\delta_{t_j}\biggr)\qquad \text{in}\ \mathbb R^2,$$ $$u(x)=-2(1+\theta_\infty)\ln|x|+O(1)\qquad \text{as} \ |x|\to\infty,$$ where $\theta_0$, $\theta_1$, $\theta_\infty$, and $\theta_{j}'$ are positive non-integers for $1\le j\le n$, while $\theta_{j}'\in\mathbb{N}_{\geq 2}$ are integers for $n+1\le j\le n+m$. Geometrically, a solution $u$ gives rise to a conical metric ${\rm d}s^2=\frac12 {\rm e}^u|{\rm d}x|^2$ of curvature $1$ on the sphere, with conical singularities at $0$, $1$, $\infty$, and $t_j$, $1\le j\le n+m$, with angles $2\pi\theta_0$, $2\pi\theta_1$, $2\pi\theta_\infty$, and $2\pi\theta_{j}'$ at $0$, $1$, $\infty$, and $t_j$, respectively. The metric ${\rm d}s^2$ or the solution $u$ is called co-axial, which was introduced by Mondello and Panov, if there is a developing map $h(x)$ of $u$ such that the projective monodromy group is contained in the unit circle. The sufficient and necessary conditions in terms of angles for the existence of such metrics were obtained by Mondello-Panov (2016) and Eremenko (2020). In this paper, we fix the angles and study the locations of the singularities $t_1,\dots,t_{n+m}$. Let $A\subset\mathbb{C}^{n+m}$ be the set of those $(t_1,\dots,t_{n+m})$'s such that a co-axial metric exists, among other things we prove that (i) If $m=1$, i.e., there is only one integer $\theta_{n+1}'$ among $\theta_j'$, then $A$ is a finite set. Moreover, for the case $n=0$, we obtain a sharp bound of the cardinality of the set $A$. We apply a result due to Eremenko, Gabrielov, and Tarasov (2016) and the monodromy of hypergeometric equations to obtain such a bound. (ii) If $m\ge 2$, then $A$ is an algebraic set of dimension $\leq m-1$.

Key words: co-axial metric; location of singularities; algebraic set.

pdf (606 kb)   tex (35 kb)

References

1. Brezis H., Merle F., Uniform estimates and blow-up behavior for solutions of $-\Delta u=V(x){\rm e}^u$ in two dimensions, Comm. Partial Differential Equations 16 (1991), 1223-1253.
2. Chai C.-L., Lin C.-S., Wang C.-L., Mean field equations, hyperelliptic curves and modular forms: I, Camb. J. Math. 3 (2015), 127-274, arXiv:1502.03297.
3. Chen Z., Lin C.-S., Critical points of the classical Eisenstein series of weight two, J. Differential Geom. 113 (2019), 189-226, arXiv:1707.04804.
4. Chen Z., Lin C.-S., Sharp nonexistence results for curvature equations with four singular sources on rectangular tori, Amer. J. Math. 142 (2020), 1269-1300, arXiv:1709.04287.
5. Chen Z., Lin C.-S., Exact number and non-degeneracy of critical points of multiple Green functions on rectangular tori, J. Differential Geom. 118 (2021), 457-485.
6. Chen Z., Lin C.-S., Yang Y., Metrics with positive constant curvature and algebraic $j$-values, in preparation.
7. Cox D.A., Little J., O'Shea D., Ideals, varieties, and algorithms. An introduction to computational algebraic geometry and commutative algebra, 4th ed., Undergrad. Texts Math., Springer, Cham, 2015.
8. Eremenko A., Metrics of positive curvature with conic singularities on the sphere, Proc. Amer. Math. Soc. 132 (2004), 3349-3355, arXiv:math.MG/0208025.
9. Eremenko A., Co-axial monodromy, Ann. Sc. Norm. Super. Pisa Cl. Sci. 20 (2020), 619-634, arXiv:1706.04608.
10. Eremenko A., Gabrielov A., Tarasov V., Metrics with conic singularities and spherical polygons, Illinois J. Math. 58 (2014), 739-755, arXiv:1405.1738.
11. Eremenko A., Gabrielov A., Tarasov V., Spherical quadrilaterals with three non-integer angles, J. Math. Phys. Anal. Geom. 12 (2016), 134-167, arXiv:1504.02928.
12. Eremenko A., Tarasov V., Fuchsian equations with three non-apparent singularities, SIGMA 14 (2018), 058, 12 pages, arXiv:1801.08529.
13. Guo J.-W., Lin C.-S., Yang Y., Metrics with positive constant curvature and modular differential equations, Camb. J. Math. 9 (2021), 977-1033, arXiv:2110.15580.
14. Iwasaki K., Kimura H., Shimomura S., Yoshida M., From Gauss to Painlevé. A modern theory of special functions, Aspects Math., Vol. E16, Friedr. Vieweg & Sohn, Braunschweig, 1991.
15. Lin C.-S., Wang C.-L., Geometric quantities arising from bubbling analysis of mean field equations, Comm. Anal. Geom. 28 (2020), 1289-1313, arXiv:1609.07204.
16. Luo F., Tian G., Liouville equation and spherical convex polytopes, Proc. Amer. Math. Soc. 116 (1992), 1119-1129.
17. Mondello G., Panov D., Spherical metrics with conical singularities on a 2-sphere: angle constraints, Int. Math. Res. Not. 2016 (2016), 4937-4995, arXiv:1505.01994.
18. Mondello G., Panov D., Spherical surfaces with conical points: systole inequality and moduli spaces with many connected components, Geom. Funct. Anal. 29 (2019), 1110-1193, arXiv:1807.04373.
19. Whittaker E.T., Watson G.N., A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996.