Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 20 (2024), 020, 27 pages      arXiv:2204.00798

The Clifford Algebra Bundle on Loop Space

Matthias Ludewig
Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany

Received September 01, 2023, in final form February 22, 2024; Published online March 12, 2024

We construct a Clifford algebra bundle formed from the tangent bundle of the smooth loop space of a Riemannian manifold, which is a bundle of super von Neumann algebras on the loop space. We show that this bundle is in general non-trivial, more precisely that its triviality is obstructed by the transgressions of the second Stiefel-Whitney class and the first (fractional) Pontrjagin class of the manifold.

Key words: loop spaces; Clifford algebra; string geometry; von Neumann algebra bundles.

pdf (530 kb)   tex (37 kb)  


  1. Ambler S., A bundle gerbe construction of a spinor bundle from the smooth free loop of a vector bundle, Ph.D. Thesis, University of Notre Dame, 2012, arXiv:1207.4418.
  2. Araki H., Bogoliubov automorphisms and Fock representations of canonical anticommutation relations, in Operator Algebras and Mathematical Physics (Iowa City, Iowa, 1985), Contemp. Math., Vol. 62, American Mathematical Society, Providence, RI, 1987, 23-141.
  3. Atiyah M., Segal G., Twisted $K$-theory, Ukr. Math. Bull. 1 (2004), 291-334, arXiv:math.KT/0407054.
  4. Atiyah M., Singer I., Index theory for skew-adjoint Fredholm operators, Inst. Hautes Études Sci. Publ. Math. 37 (1969), 5-26.
  5. Borel A., Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. 57 (1953), 115-207.
  6. Carey A.L., Crowley D., Murray M.K., Principal bundles and the Dixmier Douady class, Comm. Math. Phys. 193 (1998), 171-196, arXiv:hep-th/9702147.
  7. Chern S.S., Simons J., Characteristic forms and geometric invariants, Ann. of Math. 99 (1974), 48-69.
  8. Dadarlat M., Pennig U., A Dixmier-Douady theory for strongly self-absorbing $C^*$-algebras, J. Reine Angew. Math. 2016 (2016), 153-181, arXiv:1302.4468.
  9. Dadarlat M., Winter W., On the $KK$-theory of strongly self-absorbing $C^*$-algebras, Math. Scand. 104 (2009), 95-107, arXiv:0704.0583.
  10. Dixmier J., Douady A., Champs continus d'espaces hilbertiens et de $C^*$-algèbres, Bull. Soc. Math. France 91 (1963), 227-284.
  11. Donovan P., Karoubi M., Graded Brauer groups and $K$-theory with local coefficients, Inst. Hautes Études Sci. Publ. Math. (1970), 5-25.
  12. Douglas C.L., Henriques A.G., Topological modular forms and conformal nets, in Mathematical Foundations of Quantum Field Theory and Perturbative String Theory, Proc. Sympos. Pure Math., Vol. 83, American Mathematical Society, Providence, RI, 2011, 341-354, arXiv:1103.4187.
  13. Evington S., Pennig U., Locally trivial ${\rm W}^*$-bundles, Internat. J. Math. 27 (2016), 1650088, 25 pages, arXiv:1601.05964.
  14. Haagerup U., The standard form of von Neumann algebras, Math. Scand. 37 (1975), 271-283.
  15. Kristel P., Ludewig M., Waldorf K., 2-vector bundles, arXiv:2106.12198.
  16. Kristel P., Waldorf K., Smooth Fock bundles, and spinor bundles on loop space, arXiv:2009.00333.
  17. Kristel P., Waldorf K., Connes fusion of spinors on loop space, arXiv:2012.08142.
  18. Kristel P., Waldorf K., Fusion of implementers for spinors on the circle, Adv. Math. 402 (2022), 108325, 60 pages, arXiv:1905.00222.
  19. Ludewig M., The spinor bundle on loop space, arXiv:2305.12521.
  20. Mathai V., Melrose R.B., Singer I.M., The index of projective families of elliptic operators, Geom. Topol. 9 (2005), 341-373, arXiv:math.DG/0206002.
  21. McLaughlin D.A., Orientation and string structures on loop space, Pacific J. Math. 155 (1992), 143-156.
  22. Neeb K.-H., Semibounded representations and invariant cones in infinite dimensional Lie algebras, Confluentes Math. 2 (2010), 37-134, arXiv:0911.4412.
  23. Ottesen J.T., Infinite-dimensional groups and algebras in quantum physics, Lecture Notes in Phys. Monogr., Vol. 27, Springer, Berlin, 1995.
  24. Plymen R.J., Robinson P.L., Spinors in Hilbert space, Cambridge Tracts in Math., Vol. 114, Cambridge University Press, Cambridge, 1994.
  25. Prat Waldron A.F., Pfaffian line bundles over loop spaces, spin structures and the index theorem, Ph.D. Thesis, University of California, Berkeley, 2009.
  26. Pressley A., Segal G., Loop groups, Oxford Math. Monogr., The Clarendon Press, Oxford University Press, New York, 1986.
  27. Previato E., Spera M., Isometric embeddings of infinite-dimensional Grassmannians, Regul. Chaotic Dyn. 16 (2011), 356-373.
  28. Shale D., Stinespring W.F., States of the Clifford algebra, Ann. of Math. 80 (1964), 365-381.
  29. Spera M., Wurzbacher T., Twistor spaces and spinors over loop spaces, Math. Ann. 338 (2007), 801-843.
  30. Switzer R.M., Algebraic topology—homotopy and homology, Classics in Math., Springer, Berlin, 2002.
  31. Waldorf K., Transgression to loop spaces and its inverse, I: Diffeological bundles and fusion maps, Cah. Topol. Géom. Différ. Catég. 53 (2012), 162-210, arXiv:0911.3212.
  32. Waldorf K., Transgression to loop spaces and its inverse, II: Gerbes and fusion bundles with connection, Asian J. Math. 20 (2016), 59-115, arXiv:1004.0031.
  33. Waldorf K., Transgression to loop spaces and its inverse, III: Gerbes and thin fusion bundles, Adv. Math. 231 (2012), 3445-3472, arXiv:1109.0480.
  34. Waldorf K., Spin structures on loop spaces that characterize string manifolds, Algebr. Geom. Topol. 16 (2016), 675-709, arXiv:1209.1731.
  35. Wall C.T.C., Graded Brauer groups, J. Reine Angew. Math. 1964 (1964), 187-199.
  36. Wurzbacher T., Fermionic second quantization and the geometry of the restricted Grassmannian, in Infinite Dimensional Kähler manifolds (Oberwolfach, 1995), DMV Sem., Vol. 31, Birkhäuser, Basel, 2001, 287-375.

Previous article  Next article  Contents of Volume 20 (2024)