Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 18 (2022), 096, 43 pages      arXiv:2102.11816
Contribution to the Special Issue on Non-Commutative Algebra, Probability and Analysis in Action

On the Signature of a Path in an Operator Algebra

Nicolas Gilliers a and Carlo Bellingeri b
a) Institut de Mathématiques de Toulouse, UMR5219, Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
b) Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany

Received January 11, 2022, in final form November 30, 2022; Published online December 09, 2022

We introduce a class of operators associated with the signature of a smooth path $X$ with values in a $C^{\star}$ algebra $\mathcal{A}$. These operators serve as the basis of Taylor expansions of solutions to controlled differential equations of interest in noncommutative probability. They are defined by fully contracting iterated integrals of $X$, seen as tensors, with the product of $\mathcal{A}$. Were it considered that partial contractions should be included, we explain how these operators yield a trajectory on a group of representations of a combinatorial Hopf monoid. To clarify the role of partial contractions, we build an alternative group-valued trajectory whose increments embody full-contractions operators alone. We obtain therefore a notion of signature, which seems more appropriate for noncommutative probability.

Key words: signature; noncommutative probability; operads; duoidal categories.

pdf (2614 kb)   tex (3579 kb)  


  1. Aguiar M., Mahajan S., Monoidal functors, species and Hopf algebras, CRM Monogr. Ser., Vol. 29, Amer. Math. Soc., Providence, RI, 2010.
  2. Aguiar M., Sottile F., Structure of the Loday-Ronco Hopf algebra of trees, J. Algebra 295 (2006), 473-511, arXiv:math.CO/0409022.
  3. Biane P., Speicher R., Free diffusions, free entropy and free Fisher information, Ann. Inst. H. Poincaré Probab. Statist. 37 (2001), 581-606.
  4. Björner A., Wachs M.L., Shellable nonpure complexes and posets. II, Trans. Amer. Math. Soc. 349 (1997), 3945-3975.
  5. Bultel J.-P., Giraudo S., Combinatorial Hopf algebras from PROs, J. Algebraic Combin. 44 (2016), 455-493, arXiv:1406.6903.
  6. Capitaine M., Donati-Martin C., The Lévy area process for the free Brownian motion, J. Funct. Anal. 179 (2001), 153-169.
  7. Chen K.-T., Iterated integrals and exponential homomorphisms, Proc. London Math. Soc. 4 (1954), 502-512.
  8. Deya A., Schott R., On the rough-paths approach to non-commutative stochastic calculus, J. Funct. Anal. 265 (2013), 594-628, arXiv:1301.6238.
  9. Forcey S., Lauve A., Sottile F., Hopf structures on the multiplihedra, SIAM J. Discrete Math. 24 (2010), 1250-1271, arXiv:0911.2057.
  10. Friz P.K., Hairer M., A course on rough paths, Universitext, Springer, Cham, 2020.
  11. Gelfand I.M., Krob D., Lascoux A., Leclerc B., Retakh V.S., Thibon J.-Y., Noncommutative symmetric functions, Adv. Math. 112 (1995), 218-348, arXiv:hep-th/9407124.
  12. Ledoux M., Lyons T., Qian Z., Lévy area of Wiener processes in Banach spaces, Ann. Probab. 30 (2002), 546-578.
  13. Loday J.-L., Ronco M.O., Hopf algebra of the planar binary trees, Adv. Math. 139 (1998), 293-309.
  14. Loday J.-L., Vallette B., Algebraic operads, Grundlehren Math. Wiss., Vol. 346, Springer, Heidelberg, 2012.
  15. Lyons T.J., Differential equations driven by rough signals, Rev. Mat. Iberoamericana 14 (1998), 215-310.
  16. Lyons T.J., Victoir N., An extension theorem to rough paths, Ann. Inst. H. Poincaré C Anal. Non Linéaire 24 (2007), 835-847.
  17. Malvenuto C., Reutenauer C., Duality between quasi-symmetric functions and the Solomon descent algebra, J. Algebra 177 (1995), 967-982.
  18. Patras F., Schocker M., Trees, set compositions and the twisted descent algebra, J. Algebraic Combin. 28 (2008), 3-23, arXiv:math.CO/0512227.
  19. Ryan R.A., Introduction to tensor products of Banach spaces, Springer Monogr. Math., Springer, London, 2002.
  20. Stanley R.P., Enumerative combinatorics, Vol. 2, Cambridge Stud. Adv. Math., Vol. 62, Cambridge University Press, Cambridge, 1999.
  21. Vallette B., A Koszul duality for PROPs, Trans. Amer. Math. Soc. 359 (2007), 4865-4943, arXiv:math.AT/0411542.
  22. Victoir N., Levy area for the free Brownian motion: existence and non-existence, J. Funct. Anal. 208 (2004), 107-121.
  23. Young L.C., An inequality of the Hölder type, connected with Stieltjes integration, Acta Math. 67 (1936), 251-282.

Previous article  Next article  Contents of Volume 18 (2022)