Processing math: 100%

Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 18 (2022), 083, 27 pages      arXiv:2204.03595      https://doi.org/10.3842/SIGMA.2022.083
Contribution to the Special Issue on Non-Commutative Algebra, Probability and Analysis in Action

Markovianity and the Thompson Group F

Claus Köstler a and Arundhathi Krishnan b
a) School of Mathematical Sciences, University College Cork, Cork, Ireland
b) Department of Pure Mathematics, University of Waterloo, Ontario, Canada

Received April 08, 2022, in final form October 07, 2022; Published online October 27, 2022

Abstract
We show that representations of the Thompson group F in the automorphisms of a noncommutative probability space yield a large class of bilateral stationary noncommutative Markov processes. As a partial converse, bilateral stationary Markov processes in tensor dilation form yield representations of F. As an application, and building on a result of Kümmerer, we canonically associate a representation of F to a bilateral stationary Markov process in classical probability.

Key words: noncommutative stationary Markov processes; representations of Thompson group F.

pdf (516 kb)   tex (34 kb)  

References

  1. Aiello V., Jones V.F.R., On spectral measures for certain unitary representations of R. Thompson's group F, J. Funct. Anal. 280 (2021), paper no. 108777, 27 pages, arXiv:1905.05806.
  2. Anantharaman-Delaroche C., On ergodic theorems for free group actions on noncommutative spaces, Probab. Theory Related Fields 135 (2006), 520-546, arXiv:math.OA/0412253.
  3. Belk J., Thompson's group F, Ph.D. Thesis, Cornell University, 2004, available at http://dml.mathdoc.fr/item/0708.3609.
  4. Brothier A., Jones V.F.R., On the Haagerup and Kazhdan properties of R. Thompson's groups, J. Group Theory 22 (2019), 795-807, arXiv:1805.02177.
  5. Brothier A., Jones V.F.R., Pythagorean representations of Thompson's groups, J. Funct. Anal. 277 (2019), 2442-2469, arXiv:1807.06215.
  6. Cannon J.W., Floyd W.J., What is Thompson's group?, Notices Amer. Math. Soc. 58 (2011), 1112-1113.
  7. Cannon J.W., Floyd W.J., Parry W.R., Introductory notes on Richard Thompson's groups, Enseign. Math. 42 (1996), 215-256.
  8. Evans D.G., Gohm R., Köstler C., Semi-cosimplicial objects and spreadability, Rocky Mountain J. Math. 47 (2017), 1839-1873, arXiv:1508.03168.
  9. Gohm R., Köstler C., Noncommutative independence from the braid group B, Comm. Math. Phys. 289 (2009), 435-482, arXiv:0806.3691.
  10. Goodman F.M., de la Harpe P., Jones V.F.R., Coxeter graphs and towers of algebras, Math. Sci. Res. Inst. Publ., Vol. 14, Springer-Verlag, New York, 1989.
  11. Haagerup U., Musat M., Factorization and dilation problems for completely positive maps on von Neumann algebras, Comm. Math. Phys. 303 (2011), 555-594, arXiv:1009.0778.
  12. Jones V.F.R., Some unitary representations of Thompson's groups F and T, J. Comb. Algebra 1 (2017), 1-44, arXiv:1412.7740.
  13. Jones V.F.R., A no-go theorem for the continuum limit of a periodic quantum spin chain, Comm. Math. Phys. 357 (2018), 295-317, arXiv:1607.08769.
  14. Jones V.F.R., Scale invariant transfer matrices and Hamiltonians, J. Phys. A 51 (2018), 104001, 27 pages, arXiv:1706.00515.
  15. Jones V.F.R., Sunder V.S., Introduction to subfactors, London Math. Soc. Lecture Note Ser., Vol. 234, Cambridge University Press, Cambridge, 1997.
  16. Köstler C., A noncommutative extended de Finetti theorem, J. Funct. Anal. 258 (2010), 1073-1120, arXiv:0806.3621.
  17. Köstler C., Krishnan A., Wills S.J., Markovianity and the Thompson monoid F+, arXiv:2009.14811.
  18. Kümmerer B., Markov dilations on W-algebras, J. Funct. Anal. 63 (1985), 139-177.
  19. Kümmerer B., Construction and structure of Markov dilations on W-algebras, Habilitationsschrift, Tübingen, 1986.
  20. Kümmerer B., Personal communication, 2021.
  21. Kümmerer B., Schröder W., A Markov dilation of a nonquasifree Bloch evolution, Comm. Math. Phys. 90 (1983), 251-262.
  22. Popa S., Relative dimension, towers of projections and commuting squares of subfactors, Pacific J. Math. 137 (1989), 181-207.
  23. Takesaki M., Conditional expectations in von Neumann algebras, J. Funct. Anal. 9 (1972), 306-321.
  24. Takesaki M., Theory of operator algebras. I, Springer-Verlag, New York - Heidelberg, 1979.
  25. Takesaki M., Theory of operator algebras. II. Operator algebras and non-commutative geometry. VI, Encyclopaedia of Mathematical Sciences, Vol. 125, Springer-Verlag, Berlin, 2003.
  26. Varilly J.C., Dilation of a nonquasifree dissipative evolution, Lett. Math. Phys. 5 (1981), 113-116.
  27. Vershik A.M., The theory of filtrations of subalgebras, standardness and independence, Russian Math. Surveys 72 (2017), 257-333, arXiv:1705.06619.

Previous article  Next article  Contents of Volume 18 (2022)