Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 18 (2022), 042, 39 pages      arXiv:2104.13848

Relating Stated Skein Algebras and Internal Skein Algebras

Benjamin Haïoun
Institut de Mathématiques de Toulouse, France

Received October 07, 2021, in final form May 25, 2022; Published online June 11, 2022

We give an explicit correspondence between stated skein algebras, which are defined via explicit relations on stated tangles in [Costantino F., Lê T.T.Q., arXiv:1907.11400], and internal skein algebras, which are defined as internal endomorphism algebras in free cocompletions of skein categories in [Ben-Zvi D., Brochier A., Jordan D., J. Topol. 11 (2018), 874-917, arXiv:1501.04652] or in [Gunningham S., Jordan D., Safronov P., arXiv:1908.05233]. Stated skein algebras are defined on surfaces with multiple boundary edges and we generalise internal skein algebras in this context. Now, one needs to distinguish between left and right boundary edges, and we explain this phenomenon on stated skein algebras using a half-twist. We prove excision properties of multi-edges internal skein algebras using excision properties of skein categories, and agreeing with excision properties of stated skein algebras when $\mathcal{V} = \mathcal{U}_{q^2}(\mathfrak{sl}_2)\text{-}{\rm mod}^{\rm fin}$. Our proofs are mostly based on skein theory and we do not require the reader to be familiar with the formalism of higher categories.

Key words: quantum invariants; skein theory; category theory.

pdf (819 kb)   tex (60 kb)  


  1. Abe E., Hopf algebras, Cambridge Tracts in Mathematics, Vol. 74, Cambridge University Press, Cambridge - New York, 1980.
  2. Ben-Zvi D., Brochier A., Jordan D., Integrating quantum groups over surfaces, J. Topol. 11 (2018), 874-917, arXiv:1501.04652.
  3. Bonahon F., Wong H., Quantum traces for representations of surface groups in ${\rm SL}_2(\mathbb C)$, Geom. Topol. 15 (2011), 1569-1615, arXiv:1003.5250.
  4. Carter J.S., Flath D.E., Saito M., The classical and quantum 6$j$-symbols, Mathematical Notes, Vol. 43, Princeton University Press, Princeton, NJ, 1995.
  5. Chari V., Pressley A., A guide to quantum groups, Cambridge University Press, Cambridge, 1994.
  6. Cooke J., Excision of skein categories and factorisation homology, arXiv:1910.02630.
  7. Costantino F., Lê T.T.Q., Stated skein algebras of surfaces, arXiv:1907.11400.
  8. Dugger D., Sheaves and homotopy theory, 1998, Incomplete draft,
  9. Etingof P., Gelaki S., Nikshych D., Ostrik V., Tensor categories, Mathematical Surveys and Monographs, Vol. 205, Amer. Math. Soc., Providence, RI, 2015.
  10. Faitg M., Holonomy and (stated) skein algebras in combinatorial quantization, arXiv:2003.08992.
  11. Gunningham S., Jordan D., Safronov P., The finiteness conjecture for skein modules, arXiv:1908.05233.
  12. Johnson-Freyd T., Heisenberg-picture quantum field theory, in Representation Theory, Mathematical Physics, and Integrable Systems, Progr. Math., Vol. 340, Birkhäuser/Springer, Cham, 2021, 371-409, arXiv:1508.05908.
  13. Kassel C., Quantum groups, Graduate Texts in Mathematics, Vol. 155, Springer-Verlag, New York, 1995.
  14. Kelly G.M., Basic concepts of enriched category theory, Repr. Theory Appl. Categ. (2005), vi+137 pages.
  15. Klimyk A., Schmüdgen K., Quantum groups and their representations, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997.
  16. Korinman J., Finite presentations for stated skein algebras and lattice gauge field theory, arXiv:2012.03237.
  17. Korinman J., Quesney A., Classical shadows of stated skein representations at odd roots of unity, arXiv:1905.03441.
  18. Lê T.T.Q., Triangular decomposition of skein algebras, Quantum Topol. 9 (2018), 591-632, arXiv:1609.04987.
  19. Lê T.T.Q., Sikora A.S., Stated ${\rm SL}(n)$-skein modules and algebras, arXiv:2201.00045.
  20. Lê T.T.Q., Yu T., Stated skein modules of marked 3-manifolds/surfaces, a survey, Acta Math. Vietnam. 46 (2021), 265-287, arXiv:2005.14577.
  21. Muller G., Skein algebras and cluster algebras of marked surfaces, arXiv:1204.0020.
  22. Ramos González J., On the tensor product of large categories, Ph.D. Thesis, University of Antwerp, 2017.
  23. Reshetikhin N.Yu., Turaev V.G., Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127 (1990), 1-26.
  24. Snyder N., Tingley P., The half-twist for $U_q({\mathfrak g})$ representations, Algebra Number Theory 3 (2009), 809-834, arXiv:0810.0084.
  25. Takeuchi M., A short course on quantum matrices, in New Directions in Hopf Algebras, Math. Sci. Res. Inst. Publ., Vol. 43, Cambridge University Press, Cambridge, 2002, 383-435.
  26. Tingley P., A minus sign that used to annoy me but now I know why it is there, arXiv:1002.0555.
  27. Turaev V.G., Quantum invariants of knots and 3-manifolds, De Gruyter Studies in Mathematics, Vol. 18, Walter de Gruyter & Co., Berlin, 2010.
  28. Wakui M., The coribbon structures of some finite dimensional braided Hopf algebras generated by $2\times 2$-matrix coalgebras, in Noncommutative Geometry and Quantum Groups (Warsaw, 2001), Banach Center Publ., Vol. 61, Polish Acad. Sci. Inst. Math., Warsaw, 2003, 333-344.
  29. Walker K., TQFTs, Early incomplete draft, 2006,

Previous article  Next article  Contents of Volume 18 (2022)