Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 18 (2022), 041, 31 pages      arXiv:2202.08918

Expansion for a Fundamental Solution of Laplace's Equation in Flat-Ring Cyclide Coordinates

Lijuan Bi a, Howard S. Cohl b and Hans Volkmer c
a) Department of Mathematics,The Ohio State University at Newark,Newark, OH 43055, USA
b) Applied and ComputationalMathematics Division, National Institute of Standards and Technology, Mission Viejo, CA 92694, USA
c) Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201-0413, USA

Received November 20, 2021, in final form May 18, 2022; Published online June 03, 2022

We derive an expansion for the fundamental solution of Laplace's equation in flat-ring coordinates in three-dimensional Euclidean space. This expansion is a double series of products of functions that are harmonic in the interior and exterior of ''flat rings''. These internal and external flat-ring harmonic functions are expressed in terms of simply-periodic Lamé functions. In a limiting case we obtain the expansion of the fundamental solution in toroidal coordinates.

Key words: Laplace's equation; fundamental solution; separable curvilinear coordinate system; flat-ring cyclide coordinates; special functions; orthogonal polynomials.

pdf (1053 kb)   tex (372 kb)  


  1. Bateman H., Partial differential equations of mathematical physics, Cambridge University Press, New York, 1959.
  2. Blimke J., Myklebust J., Volkmer H., Merrill S., Four-shell ellipsoidal model employing multipole expansion in ellipsoidal coordinates, Med. Biol. Eng. Comput. 46 (2008), 859-869.
  3. Bôcher M., Über die Reihenentwickelungen der Potentialtheorie, B.G. Teubner, Leipzig, 1894.
  4. Coddington E.A., An introduction to ordinary differential equations, Prentice-Hall Mathematics Series, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1961.
  5. Cohl H.S., Tohline J.E., A compact cylindrical Green's function expansion for the solution of potential problems, Astrophys. J. 527 (1999), 86-101.
  6. Cohl H.S., Volkmer H., Separation of variables in an asymmetric cyclidic coordinate system, J. Math. Phys. 54 (2013), 063513, 23 pages, arXiv:1301.3559.
  7. Cohl H.S., Volkmer H., Expansions for a fundamental solution of Laplace's equation on $\mathbb{R}^3$ in 5-cyclidic harmonics, Anal. Appl. (Singap.) 12 (2014), 613-633, arXiv:1311.3514.
  8. Courant R., Hilbert D., Methoden der mathematischen Physik, Heidelberger Taschenbücher, Vol. 30, Springer-Verlag, Berlin - Heidelberg, 1993.
  9. Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher transcendental functions. Vol. III, Robert E. Krieger Publishing Co. Inc., Melbourne, Fla., 1981.
  10. Gradshteyn I.S., Ryzhik I.M., Table of integrals, series, and products, 7th ed., Elsevier/Academic Press, Amsterdam, 2007.
  11. Heine E., Handbuch der Kugelfunctionen, Theorie und Anwendungen, Vol. 2, Druck und Verlag von G. Reimer, Berlin, 1881.
  12. Kellogg O.D., Foundations of potential theory, Die Grundlehren der mathematischen Wissenschaften, Vol. 31, Springer-Verlag, Berlin - New York, 1967.
  13. Lebedev N.N., Special functions and their applications, Dover Publications, Inc., New York, 1972.
  14. Magnus W., Winkler S., Hill's equation, Interscience Tracts in Pure and Applied Mathematics, Vol. 20, Interscience Publishers John Wiley & Sons, New York - London - Sydney, 1966.
  15. Miller Jr. W., Symmetry and separation of variables, Encyclopedia of Mathematics and its Applications, Vol. 4, Addison-Wesley Publishing Co., Reading, Mass. - London - Amsterdam, 1977.
  16. Moon P., Spencer D.E., Field theory handbook. Including coordinate systems, differential equations and their solution, Springer-Verlag, Berlin - Heidelberg, 1988.
  17. Morse P.M., Feshbach H., Methods of theoretical physics, Vols. 1, 2, McGraw-Hill Book Co., Inc., New York - Toronto - London, 1953.
  18. Olver F.W.J., Olde Daalhuis A.B., Lozier D.W., Schneider B.I., Boisvert R.F., Clark C.W., Miller B.R., Saunders B.V., Cohl H.S., McClain M.A. (Editors),NIST Digital Library of Mathematical Functions, Release 1.1.5 of 2022-03-15,
  19. Poole E.G.C., Dirichlet's principle for a flat ring, Proc. London Math. Soc. 29 (1929), 342-354.
  20. Poole E.G.C., Dirichlet's principle for a flat ring, Proc. London Math. Soc. 30 (1929), 174-186.
  21. Volkmer H., Integral representations for products of Lamé functions by use of fundamental solutions, SIAM J. Math. Anal. 15 (1984), 559-569.
  22. Walter W., Ordinary differential equations, Graduate Texts in Mathematics, Vol. 182, Springer-Verlag, New York, 1998.
  23. Wangerin A., Reduction der Potentialgleichung für gewisse Rotationskörper auf eine gewöhnliche Differentialgleichung, Preisschr. der Jabl. Ges. Leipzig, Hirzel, 1875.
  24. Whittaker E.T., Watson G.N., A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996.
  25. Zachmanoglou E.C., Thoe D.W., Introduction to partial differential equations with applications, Williams & Wilkins Co., Baltimore, Md., 1976.

Previous article  Next article  Contents of Volume 18 (2022)