Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 18 (2022), 038, 29 pages      arXiv:2103.00458

Geometrical Aspects of the Hamiltonization Problem of Dynamical Systems

Misael Avendaño-Camacho, Claudio César García-Mendoza, José Crispín Ruíz-Pantaleón and Eduardo Velasco-Barreras
Departamento de Matemáticas, Universidad de Sonora, México

Received March 02, 2021, in final form May 10, 2022; Published online May 20, 2022

Some positive answers to the problem of endowing a dynamical system with a Hamiltonian formulation are presented within the class of Poisson structures in a geometric framework. We address this problem on orientable manifolds and by using decomposable Poisson structures. In the first case, the existence of a Hamiltonian formulation is ensured under the vanishing of some topological obstructions, improving a result of Gao. In the second case, we apply a variant of the Hojman construction to solve the problem for vector fields admitting a transversally invariant metric and, in particular, for infinitesimal generators of proper actions. Finally, we also consider the hamiltonization problem for Lie group actions and give solutions in the particular case in which the acting Lie group is a low-dimensional torus.

Key words: Hamiltonian formulation; Poisson manifold; first integral; unimodularity; transversally invariant metric; symmetry.

pdf (535 kb)   tex (39 kb)  


  1. Abarbanel H.D.I., Rouhi A., Hamiltonian structures for smooth vector fields, Phys. Lett. A 124 (1987), 281-286.
  2. Alvarado-Flores R., Hernández-Dávila J.M., Agüero-Granado M., Local hamiltonization and foliation: a new solution to the hamiltonization problem, Electromagn. Phenomena 6 (2006), 189-201.
  3. Ballesteros A., Blasco A., Gutierrez-Sagredo I., Hamiltonian structure of compartmental epidemiological models, Phys. D 413 (2020), 132656, 18 pages, arXiv:2006.00564.
  4. Bogoyavlenskij O.I., Extended integrability and bi-Hamiltonian systems, Comm. Math. Phys. 196 (1998), 19-51.
  5. Bolsinov A.V., Borisov A.V., Mamaev I.S., Hamiltonization of non-holonomic systems in the neighborhood of invariant manifolds, Regul. Chaotic Dyn. 16 (2011), 443-464.
  6. Cairó L., Feix M.R., Families of invariants of the motion for the Lotka-Volterra equations: the linear polynomials family, J. Math. Phys. 33 (1992), 2440-2455.
  7. Damianou P.A., Petalidou F., Poisson brackets with prescribed Casimirs, Canad. J. Math. 64 (2012), 991-1018, arXiv:1103.0849.
  8. Dazord P., Hector G., Intégration symplectique des variétés de Poisson totalement asphériques, in Symplectic Geometry, Groupoids, and Integrable Systems (Berkeley, CA, 1989), Math. Sci. Res. Inst. Publ., Vol. 20, Springer, New York, 1991, 37-72.
  9. del Hoyo M., Fernandes R.L., Riemannian metrics on Lie groupoids, J. Reine Angew. Math. 735 (2018), 143-173, arXiv:1404.5989.
  10. Dufour J.-P., Zung N.T., Poisson structures and their normal forms, Progress in Mathematics, Vol. 242, Birkhäuser Verlag, Basel, 2005.
  11. Duistermaat J.J., Kolk J.A.C., Lie groups, Universitext, Springer-Verlag, Berlin, 2000.
  12. Fassò F., Giacobbe A., Sansonetto N., Periodic flows, rank-two Poisson structures, and nonholonomic mechanics, Regul. Chaotic Dyn. 10 (2005), 267-284.
  13. Fedorov Yu.N., García-Naranjo L.C., Marrero J.C., Unimodularity and preservation of volumes in nonholonomic mechanics, J. Nonlinear Sci. 25 (2015), 203-246, arXiv:1304.1788.
  14. Gammella A., An approach to the tangential Poisson cohomology based on examples in duals of Lie algebras, Pacific J. Math. 203 (2002), 283-320, arXiv:math.DG/0207215.
  15. Gao P., Hamiltonian structure and first integrals for the Lotka-Volterra systems, Phys. Lett. A 273 (2000), 85-96.
  16. Gümral H., Nutku Y., Poisson structure of dynamical systems with three degrees of freedom, J. Math. Phys. 34 (1993), 5691-5723.
  17. Hernández-Bermejo B., Fairén V., A constant of motion in $3$D implies a local generalized Hamiltonian structure, Phys. Lett. A 234 (1997), 35-40, arXiv:1910.03888.
  18. Hirsch M.W., On imbedding differentiable manifolds in euclidean space, Ann. of Math. 73 (1961), 566-571.
  19. Hojman S.A., Quantum algebras in classical mechanics, J. Phys. A: Math. Gen. 24 (1991), L249-L254.
  20. Hojman S.A., The construction of a Poisson structure out of a symmetry and a conservation law of a dynamical system, J. Phys. A: Math. Gen. 29 (1996), 667-674.
  21. Kozlov V.V., On the theory of integration of the equations of nonholonomic mechanics, Adv. in Mech. 8 (1985), 85-107.
  22. Kozlov V.V., Linear systems with a quadratic integral, J. Appl. Math. Mech. 56 (1992), 803-809.
  23. Kozlov V.V., First integrals and asymptotic trajectories, Sb. Math. 211 (2020), 29-54.
  24. Lichnerowicz A., Les variétés de Poisson et leurs algèbres de Lie associées, J. Differential Geometry 12 (1977), 253-300.
  25. Llibre J., Peralta-Salas D., A note on the first integrals of vector fields with integrating factors and normalizers, SIGMA 8 (2012), 035, 9 pages, arXiv:1206.3005.
  26. Perlick V., The Hamiltonization problem from a global viewpoint, J. Math. Phys. 33 (1992), 599-606.
  27. Pflaum M.J., Posthuma H., Tang X., Geometry of orbit spaces of proper Lie groupoids, J. Reine Angew. Math. 694 (2014), 49-84, arXiv:1101.0180.
  28. Vaisman I., Lectures on the geometry of Poisson manifolds, Progress in Mathematics, Vol. 118, Birkhäuser Verlag, Basel, 1994.
  29. Vorob'ev Yu.M., Karasev M.V., Poisson manifolds and the Schouten bracket, Funct. Anal. Appl. 22 (1988), 1-9.
  30. Vorob'ev Yu.M., Karasev M.V., Deformation and cohomologies of Poisson bracketsin Global Analysis -- Studies and Applications, IV, Lecture Notes in Math., Vol. 1453, Springer, Berlin, 1990, 271-289.
  31. Weinstein A., The modular automorphism group of a Poisson manifold, J. Geom. Phys. 23 (1997), 379-394.
  32. Whittaker E.T., A treatise on the analytical dynamics of particles and rigid bodies, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1988.

Previous article  Next article  Contents of Volume 18 (2022)