Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 18 (2022), 034, 20 pages      arXiv:2110.10958

Witten-Reshetikhin-Turaev Invariants, Homological Blocks, and Quantum Modular Forms for Unimodular Plumbing H-Graphs

Akihito Mori and Yuya Murakami
Mathematical Institute, Tohoku University, 6-3, Aoba, Aramaki, Aoba-Ku,Sendai 980-8578, Japan

Received November 23, 2021, in final form April 28, 2022; Published online May 07, 2022

Gukov-Pei-Putrov-Vafa constructed $ q $-series invariants called homological blocks in a physical way in order to categorify Witten-Reshetikhin-Turaev (WRT) invariants and conjectured that radial limits of homological blocks are WRT invariants. In this paper, we prove their conjecture for unimodular H-graphs. As a consequence, it turns out that the WRT invariants of H-graphs yield quantum modular forms of depth two and of weight one with the quantum set $ \mathbb{Q} $. In the course of the proof of our main theorem, we first write the invariants as finite sums of rational functions. We second carry out a systematic study of weighted Gauss sums in order to give new vanishing results for them. Combining these results, we finally prove that the above conjecture holds for H-graphs.

Key words: quantum invariants; Witten-Reshetikhin-Turaev invariants; homological blocks; quantum modular forms; plumbed manifolds; false theta funcitons; Gauss sums.

pdf (473 kb)   tex (24 kb)  


  1. Andersen J.E., Mistegaard W.E., Resurgence analysis of quantum invariants of Seifert fibered homology spheres, J. Lond. Math. Soc. 105 (2022), 709-764, arXiv:1811.05376.
  2. Bringmann K., Kaszian J., Milas A., Higher depth quantum modular forms, multiple Eichler integrals, and $\mathfrak{sl}_3$ false theta functions, Res. Math. Sci. 6 (2019), 20, 41 pages, arXiv:1704.06891.
  3. Bringmann K., Mahlburg K., Milas A., Higher depth quantum modular forms and plumbed 3-manifolds, Lett. Math. Phys. 110 (2020), 2675-2702, arXiv:1906.10722.
  4. Bringmann K., Milas A., $\mathcal W$-algebras, false theta functions and quantum modular forms, I, Int. Math. Res. Not. 2015 (2015), 11351-11387.
  5. Cheng M.C., Chun S., Ferrari F., Gukov S., Harrison S.M., 3d modularity, J. High Energy Phys. 2019 (2019), no. 10, 010, 93 pages, arXiv:1809.10148.
  6. Chun S., A resurgence analysis of the ${\rm SU}(2)$ Chern-Simons partition functions on a Brieskorn homology sphere $\Sigma(2,5,7)$, arXiv:1701.03528.
  7. Deloup F., Turaev V., On reciprocity, J. Pure Appl. Algebra 208 (2007), 153-158, arXiv:math.AC/0512050.
  8. Fuji H., Iwaki K., Murakami H., Terashima Y., Witten-Reshetikhin-Turaev function for a knot in Seifert manifolds, Comm. Math. Phys. 386 (2021), 225-251, arXiv:2007.15872.
  9. Gukov S., Marino M., Putrov P., Resurgence in complex Chern-Simons theory, arXiv:1605.07615.
  10. Gukov S., Pei D., Putrov P., Vafa C., BPS spectra and 3-manifold invariants, J. Knot Theory Ramifications 29 (2020), 2040003, 85 pages, arXiv:1701.06567.
  11. Hikami K., On the quantum invariant for the Brieskorn homology spheres, Internat. J. Math. 16 (2005), 661-685, arXiv:math-ph/0405028.
  12. Hikami K., Quantum invariant, modular form, and lattice points, Int. Math. Res. Not. 2005 (2005), 121-154, arXiv:math-ph/0409016.
  13. Hikami K., Quantum invariants, modular forms, and lattice points. II, J. Math. Phys. 47 (2006), 102301, 32 pages, arXiv:math.QA/0604091.
  14. Hikami K., On the quantum invariants for the spherical Seifert manifolds, Comm. Math. Phys. 268 (2006), 285-319, arXiv:math-ph/0504082.
  15. Lawrence R., Rozansky L., Witten-Reshetikhin-Turaev invariants of Seifert manifolds, Comm. Math. Phys. 205 (1999), 287-314.
  16. Lawrence R., Zagier D., Modular forms and quantum invariants of $3$-manifolds, Asian J. Math. 3 (1999), 93-107.
  17. Reshetikhin N., Turaev V.G., Invariants of $3$-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), 547-597.
  18. Turaev V.G., Quantum invariants of knots and 3-manifolds, De Gruyter Studies in Mathematics, Vol. 18, De Gruyter, Berlin, 2016.
  19. Wu D.H., Resurgent analysis of $\rm SU(2)$ Chern-Simons partition function on Brieskorn spheres $\Sigma(2, 3, 6n + 5)$, J. High Energy Phys. 2021 (2021), no. 2, 008, 18 pages, arXiv:2010.13736.
  20. Zagier D., Quantum modular forms, in Quanta of Maths, Clay Math. Proc., Vol. 11, Amer. Math. Soc., Providence, RI, 2010, 659-675.

Previous article  Next article  Contents of Volume 18 (2022)