Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 18 (2022), 021, 20 pages      arXiv:2101.07490

On the Quantum K-Theory of the Quintic

Stavros Garoufalidis a and Emanuel Scheidegger b
a) International Center for Mathematics, Department of Mathematics, Southern University of Science and Technology, Shenzhen, China
b) Beijing International Center for Mathematical Research, Peking University, Beijing, China

Received October 21, 2021, in final form March 03, 2022; Published online March 21, 2022

Quantum K-theory of a smooth projective variety at genus zero is a collection of integers that can be assembled into a generating series $J(Q,q,t)$ that satisfies a system of linear differential equations with respect to $t$ and $q$-difference equations with respect to $Q$. With some mild assumptions on the variety, it is known that the full theory can be reconstructed from its small $J$-function $J(Q,q,0)$ which, in the case of Fano manifolds, is a vector-valued $q$-hypergeometric function. On the other hand, for the quintic 3-fold we formulate an explicit conjecture for the small $J$-function and its small linear $q$-difference equation expressed linearly in terms of the Gopakumar-Vafa invariants. Unlike the case of quantum knot invariants, and the case of Fano manifolds, the coefficients of the small linear $q$-difference equations are not Laurent polynomials, but rather analytic functions in two variables determined linearly by the Gopakumar-Vafa invariants of the quintic. Our conjecture for the small $J$-function agrees with a proposal of Jockers-Mayr.

Key words: quantum K-theory; quantum cohomology; quintic; Calabi-Yau manifolds; Gromov-Witten invariants; Gopakumar-Vafa invariants; $q$-difference equations; $q$-Frobenius method; $J$-function; reconstruction; gauged linear $\sigma$ models; 3d-3d correspondence; Chern-Simons theory; $q$-holonomic functions.

pdf (533 kb)   tex (31 kb)  


  1. Aganagic M., Vafa C., Large $N$ duality, mirror symmetry, and a $Q$-deformed $A$-polynomial for knots, arXiv:1204.4709.
  2. Almkvist G., van Enckevort C., van Straten D., Zudilin W., Tables of Calabi-Yau equations, arXiv:math.AG/0507430.
  3. Andersen J.E., Kashaev R., A TQFT from quantum Teichmüller theory, Comm. Math. Phys. 330 (2014), 887-934, arXiv:1109.6295.
  4. Andersen J.E., Kashaev R., The Teichmüller TQFT, in Proceedings of the International Congress of Mathematicians - Rio de Janeiro 2018, Vol. III, Invited Lectures, World Sci. Publ., Hackensack, NJ, 2018, 2541-2565, arXiv:1811.06853.
  5. Anderson D., Chen L., Tseng H.H., On the finiteness of quantum K-theory of a homogeneous space, Int. Math. Res. Not. 2022 (2022), 1313-1349, arXiv:1804.04579.
  6. Beem C., Dimofte T., Pasquetti S., Holomorphic blocks in three dimensions, J. High Energy Phys. 2014 (2014), no. 12, 177, 119 pages, arXiv:1211.1986.
  7. Candelas P., de la Ossa X.C., Green P.S., Parkes L., A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nuclear Phys. B 359 (1991), 21-74.
  8. Cooper D., Culler M., Gillet H., Long D.D., Shalen P.B., Plane curves associated to character varieties of $3$-manifolds, Invent. Math. 118 (1994), 47-84.
  9. Cox D.A., Katz S., Mirror symmetry and algebraic geometry, Mathematical Surveys and Monographs, Vol. 68, Amer. Math. Soc., Providence, RI, 1999.
  10. De Sole A., Kac V.G., On integral representations of $q$-gamma and $q$-beta functions, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 16 (2005), 11-29, arXiv:math.QA/0302032.
  11. Dimofte T., Complex Chern-Simons theory at level $k$ via the 3d-3d correspondence, Comm. Math. Phys. 339 (2015), 619-662, arXiv:1409.0857.
  12. Dimofte T., Perturbative and nonperturbative aspects of complex Chern-Simons theory, J. Phys. A: Math. Theor. 50 (2017), 443009, 25 pages, arXiv:1608.02961.
  13. Dimofte T., Gaiotto D., Gukov S., 3-manifolds and 3d indices, Adv. Theor. Math. Phys. 17 (2013), 975-1076, arXiv:1112.5179.
  14. Dimofte T., Gaiotto D., Gukov S., Gauge theories labelled by three-manifolds, Comm. Math. Phys. 325 (2014), 367-419, arXiv:1108.4389.
  15. Dimofte T., Gukov S., Hollands L., Vortex counting and Lagrangian 3-manifolds, Lett. Math. Phys. 98 (2011), 225-287, arXiv:1006.0977.
  16. Faddeev L.D., Discrete Heisenberg-Weyl group and modular group, Lett. Math. Phys. 34 (1995), 249-254, arXiv:hep-th/9504111.
  17. Garoufalidis S., On the characteristic and deformation varieties of a knot, in Proceedings of the Casson Fest, Geom. Topol. Monogr., Vol. 7, Geom. Topol. Publ., Coventry, 2004, 291-309, arXiv:math.GT/0306230.
  18. Garoufalidis S., Kashaev R., From state integrals to $q$-series, Math. Res. Lett. 24 (2017), 781-801, arXiv:1304.2705.
  19. Garoufalidis S., Lê T.T.Q., The colored Jones function is $q$-holonomic, Geom. Topol. 9 (2005), 1253-1293, arXiv:math.GT/0309214.
  20. Garoufalidis S., Zagier D., Knots, perturbative series and quantum modularity, arXiv:2111.06645.
  21. Garoufalidis S., Zagier D., Knots and their related $q$-series, in preparation.
  22. Givental A., On the WDVV equation in quantum $K$-theory, Michigan Math. J. 48 (2000), 295-304, arXiv:math.AG/0003158.
  23. Givental A., Permutation-equivariant quantum K-theory V. Toric $q$-hypergeometric functions, arXiv:1509.03903.
  24. Givental A., Permutation-equivariant quantum K-theory VIII. Explicit reconstruction, arXiv:1510.06116.
  25. Givental A., Explicit reconstruction in quantum cohomology and K-theory, Ann. Fac. Sci. Toulouse Math. 25 (2016), 419-432, arXiv:1506.06431.
  26. Givental A., Lee Y.-P., Quantum $K$-theory on flag manifolds, finite-difference Toda lattices and quantum groups, Invent. Math. 151 (2003), 193-219, arXiv:math.AG/0108105.
  27. Givental A., Tonita V., The Hirzebruch-Riemann-Roch theorem in true genus-0 quantum K-theory, in Symplectic, Poisson, and noncommutative geometry, Math. Sci. Res. Inst. Publ., Vol. 62, Cambridge University Press, New York, 2014, 43-91, arXiv:1106.3136.
  28. Iritani H., Milanov T., Tonita V., Reconstruction and convergence in quantum $K$-theory via difference equations, Int. Math. Res. Not. 2015 (2015), 2887-2937, arXiv:1309.3750.
  29. Jockers H., Mayr P., Quantum K-theory of Calabi-Yau manifolds, J. High Energy Phys. 2019 (2019), no. 011, 20 pages, arXiv:1905.03548.
  30. Jockers H., Mayr P., A 3d gauge theory/quantum K-theory correspondence, Adv. Theor. Math. Phys. 24 (2020), 327-457, arXiv:1808.02040.
  31. Kashaev R., Luo F., Vartanov G., A TQFT of Turaev-Viro type on shaped triangulations, Ann. Henri Poincaré 17 (2016), 1109-1143, arXiv:1210.8393.
  32. Kashaev R.M., A link invariant from quantum dilogarithm, Modern Phys. Lett. A 10 (1995), 1409-1418, arXiv:q-alg/9504020.
  33. Lee Y.-P., Quantum $K$-theory. I. Foundations, Duke Math. J. 121 (2004), 389-424, arXiv:math.AG/0105014.
  34. Macdonald I.G., Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995.
  35. Petkovšek M., Wilf H.S., Zeilberger D., $A=B$, A.K. Peters Ltd., Wellesley, MA, 1996.
  36. Reshetikhin N., Turaev V.G., Invariants of $3$-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), 547-597.
  37. Taipale K., K-theoretic J-functions of type A flag varieties, Int. Math. Res. Not. 2013 (2013), 3647-3677, arXiv:1110.3117.
  38. Tonita V., Twisted K-theoretic Gromov-Witten invariants, Math. Ann. 372 (2018), 489-526, arXiv:1508.05976.
  39. Turaev V.G., Quantum invariants of knots and 3-manifolds, De Gruyter Studies in Mathematics, Vol. 18, Walter de Gruyter & Co., Berlin, 1994.
  40. Wen Y., Difference equation for quintic 3-fold, arXiv:2011.07527.
  41. Wilf H.S., Zeilberger D., An algorithmic proof theory for hypergeometric (ordinary and ''$q$'') multisum/integral identities, Invent. Math. 108 (1992), 575-633.
  42. Witten E., Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), 351-399.
  43. Zeilberger D., A holonomic systems approach to special functions identities, J. Comput. Appl. Math. 32 (1990), 321-368.

Previous article  Next article  Contents of Volume 18 (2022)