Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 18 (2022), 001, 10 pages      arXiv:2108.01419
Contribution to the Special Issue on Mathematics of Integrable Systems: Classical and Quantum in honor of Leon Takhtajan

Tau Function and Moduli of Meromorphic Quadratic Differentials

Dmitry Korotkin ab and Peter Zograf bc
a) Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve West, Montreal, H3G 1M8 Quebec, Canada
b) Euler International Mathematical Institute, Pesochnaja nab. 10, Saint Petersburg, 197022 Russia
c) Chebyshev Laboratory, St. Petersburg State University, 14th Line V.O. 29, Saint Petersburg, 199178 Russia

Received August 09, 2021, in final form December 28, 2021; Published online January 03, 2022; References for Lemma 1.1 added January 09, 2022

The Bergman tau functions are applied to the study of the Picard group of moduli spaces of quadratic differentials with at most $n$ simple poles on genus $g$ complex algebraic curves. This generalizes our previous results on moduli spaces of holomorphic quadratic differentials.

Key words: quadratic differentials; tau function; moduli spaces.

pdf (397 kb)   tex (16 kb)       [previous version:  pdf (396 kb)   tex (16 kb)]


  1. Arbarello E., Cornalba M., The Picard groups of the moduli spaces of curves, Topology 26 (1987), 153-171.
  2. Arbarello E., Cornalba M., Griffiths P.A., Geometry of algebraic curves. Vol. II, Grundlehren der mathematischen Wissenschaften, Vol. 268, Springer, Heidelberg, 2011.
  3. Bertola M., Korotkin D., Hodge and Prym tau functions, Strebel differentials and combinatorial model of $\mathcal {M}_{g,n}$, Comm. Math. Phys. 378 (2020), 1279-1341, arXiv:1804.02495.
  4. Fay J.D., Theta functions on Riemann surfaces, Lecture Notes in Math., Vol. 352, Springer-Verlag, Berlin - New York, 1973.
  5. Fulton W., Intersection theory, 2nd ed., textitErgebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, Vol. 2, Springer-Verlag, Berlin, 1998.
  6. Kokotov A., Korotkin D., Tau-functions on spaces of abelian differentials and higher genus generalizations of Ray-Singer formula, J. Differential Geom. 82 (2009), 35-100, arXiv:math.SP/0405042.
  7. Kokotov A., Korotkin D., Zograf P., Isomonodromic tau function on the space of admissible covers, Adv. Math. 227 (2011), 586-600, arXiv:0912.3909.
  8. Korotkin D., Bergman tau-function: from Einstein equations and Dubrovin-Frobenius manifolds to geometry of moduli spaces, in Integrable Systems and Algebraic Geometry, Editors R. Donagi, T. Shaska, LMS Lecture Note Series, Cambridge University Press, Cambridge, 2019, 215-287, arXiv:1812.03514.
  9. Korotkin D., Sauvaget A., Zograf P., Tau functions, Prym-Tyurin classes and loci of degenerate differentials, Math. Ann. 375 (2019), 213-246, arXiv:1710.01239.
  10. Korotkin D., Zograf P., Tau function and moduli of differentials, Math. Res. Lett. 18 (2011), 447-458, arXiv:1003.2173.
  11. Korotkin D., Zograf P., Tau function and the Prym class, in Algebraic and Geometric Aspects of Integrable Systems and Random Matrices, Contemp. Math., Vol. 593, Amer. Math. Soc., Providence, RI, 2013, 241-261, arXiv:1302.0577.
  12. Takhtajan L.A., Zograf P.G., A local index theorem for families of $\overline\partial$-operators on punctured Riemann surfaces and a new Kähler metric on their moduli spaces, Comm. Math. Phys. 137 (1991), 399-426.
  13. Wolpert S.A., Infinitesimal deformations of nodal stable curves, Adv. Math. 244 (2013), 413-440, arXiv:1204.3680.

Next article  Contents of Volume 18 (2022)