Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 17 (2021), 098, 25 pages      arXiv:2105.05196

Hypergeometric Functions at Unit Argument: Simple Derivation of Old and New Identities

Asena Çetinkaya a, Dmitrii Karp bc and Elena Prilepkina cd
a) İstanbul Kultur University, İstanbul, Turkey
b) Holon Institute of Technology, Holon, Israel
c) Far Eastern Federal University, Ajax Bay 10, Vladivostok, 690922, Russia
d) Institute of Applied Mathematics, FEBRAS, 7 Radio Street, Vladivostok, 690041, Russia

Received May 20, 2021, in final form October 31, 2021; Published online November 07, 2021

The main goal of this paper is to derive a number of identities for the generalized hypergeometric function evaluated at unity and for certain terminating multivariate hypergeometric functions from the symmetries and other properties of Meijer's $G$ function. For instance, we recover two- and three-term Thomae relations for ${}_3F_2$, give two- and three-term transformations for ${}_4F_3$ with one unit shift and ${}_5F_4$ with two unit shifts in the parameters, establish multi-term identities for general ${}_{p}F_{p-1}$ and several transformations for terminating Kampé de Fériet and Srivastava $F^{(3)}$ functions. We further present a presumably new formula for analytic continuation of ${}_pF_{p-1}(1)$ in parameters and reveal somewhat unexpected connections between the generalized hypergeometric functions and the generalized and ordinary Bernoulli polynomials. Finally, we exploit some recent duality relations for the generalized hypergeometric and $q$-hypergeometric functions to derive multi-term relations for terminating series.

Key words: generalized hypergeometric function; Meijer's $G$ function; multiple hypergeometric series; Kampé de Fériet function; Srivastava function; hypergeometric identity; generalized Bernoulli polynomials.

pdf (536 kb)   tex (34 kb)  


  1. Andrews G.E., Problems and prospects for basic hypergeometric functions, in Theory and Application of Special Functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975), Editor R. Askey, Math. Res. Center, University Wisconsi, 1975, 191-224.
  2. Andrews G.E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, Vol. 71, Cambridge University Press, Cambridge, 1999.
  3. Bailey W.N., Generalized hypergeometric series, Cambridge Tracts in Mathematics and Mathematical Physics, Vol. 32, Stechert-Hafner, Inc., New York, 1964.
  4. Bezrodnykh S.I., Analytic continuation of the Horn hypergeometric series with an arbitrary number of variables, Integral Transforms Spec. Funct. 31 (2020), 788-803.
  5. Bühring W., The behavior at unit argument of the hypergeometric function $_3F_2$, SIAM J. Math. Anal. 18 (1987), 1227-1234.
  6. Bühring W., Generalized hypergeometric functions at unit argument, Proc. Amer. Math. Soc. 114 (1992), 145-153.
  7. Bühring W., Transformation formulas for terminating Saalschützian hypergeometric series of unit argument, J. Appl. Math. Stochastic Anal. 8 (1995), 189-194.
  8. Charalambides C.A., Enumerative combinatorics, CRC Press Series on Discrete Mathematics and its Applications, Chapman & Hall/CRC, Boca Raton, FL, 2002.
  9. Collins C.B., The role of Bell polynomials in integration, J. Comput. Appl. Math. 131 (2001), 195-222.
  10. Comtet L., Advanced combinatorics. The art of finite and infinite expansions, D. Reidel Publishing Co., Dordrecht, 1974.
  11. Darling H.B.C., On certain relations between hypergeometric series of higher orders, Proc. London Math. Soc. 34 (1932), 323-339.
  12. Guo V.J.W., Ishikawa M., Tagawa H., Zeng J., A quadratic formula for basic hypergeometric series related to Askey-Wilson polynomials, Proc. Amer. Math. Soc. 143 (2015), 2003-2015, arXiv:1212.1887.
  13. Hài N.T., Yakubovich S.B., The double Mellin-Barnes type integrals and their applications to convolution theory, Series on Soviet and East European Mathematics, Vol. 6, World Scientific Publishing Co., Inc., River Edge, NJ, 1992.
  14. Karp D., Kuznetsov A., A new identity for the sum of products of the generalized hypergeometric functions, Proc. Amer. Math. Soc. 149 (2021), 2861-2870, arXiv:1906.04975.
  15. Karp D., López J.L., Representations of hypergeometric functions for arbitrary parameter values and their use, J. Approx. Theory 218 (2017), 42-70, arXiv:1609.02340.
  16. Karp D., Prilepkina E., Hypergeometric differential equation and new identities for the coefficients of Nørlund and Bühring, SIGMA 12 (2016), 052, 23 pages, arXiv:1602.07375.
  17. Karp D., Prilepkina E., Applications of the Stieltjes and Laplace transform representations of the hypergeometric functions, Integral Transforms Spec. Funct. 28 (2017), 710-731, arXiv:1705.02493.
  18. Karp D., Prilepkina E., Beyond the beta integral method: transformation formulas for hypergeometric functions via Meijer's $G$ function, arXiv:1912.11266.
  19. Karp D., Prilepkina E., Alternative approach to Miller-Paris transformations and their extensions, in Transmutation Operators and Applications, Trends Math., Birkhäuser/Springer, Cham, 2020, 117-140, arXiv:1902.04936.
  20. Karp D., Prilepkina E., The Fox-Wright function near the singularity and the branch cut, J. Math. Anal. Appl. 484 (2020), 123664, 18 pages, arXiv:1907.04597.
  21. Karp D., Prilepkina E., Transformations of the hypergeometric ${}_4F_{3}$ with one unit shift: a group theoretic study, Mathematics 8 (2020), 1966, 21 pages, arXiv:2009.13168.
  22. Kilbas A.A., Saigo M., $H$-transforms. Theory and applications, Analytical Methods and Special Functions, Vol. 9, Chapman & Hall/CRC, Boca Raton, FL, 2004.
  23. López J.L., Pagola P.J., Karp D.B., Uniformly convergent expansions for the generalized hypergeometric functions $_{p-1}F_p$ and $_pF_p$, Integral Transforms Spec. Funct. 31 (2020), 820-837, arXiv:1812.07950.
  24. Luke Y.L., The special functions and their approximations, Vol. I, Mathematics in Science and Engineering, Vol. 53, Academic Press, New York - London, 1969.
  25. Maier R.S., Extensions of the classical transformations of the hypergeometric function $_3 F_2$, Adv. in Appl. Math. 105 (2019), 25-47, arXiv:1808.03014.
  26. Milgram M., Variations on a hypergeometric theme, J. Class. Anal. 13 (2018), 1-43, arXiv:1803.03135.
  27. Miller A.R., Paris R.B., Transformation formulas for the generalized hypergeometric function with integral parameter differences, Rocky Mountain J. Math. 43 (2013), 291-327.
  28. Minton B.M., Generalized hypergeometric function of unit argument, J. Math. Phys. 11 (1970), 1375-1376.
  29. Nørlund N.E., Hypergeometric functions, Acta Math. 94 (1955), 289-349.
  30. Nørlund N.E., Sur les valeurs asymptotiques des nombres et des polynômes de Bernoulli, Rend. Circ. Mat. Palermo 10 (1961), 27-44.
  31. Olsson P.O.M., Analytic continuations of higher-order hypergeometric functions, J. Math. Phys. 7 (1966), 702-710.
  32. Olver F.W.J., Lozier D.W., Boisvert R.F., Clark C.W. (Editors), NIST handbook of mathematical functions, Cambridge University Press, Cambridge, 2010.
  33. Prudnikov A.P., Brychkov Yu.A., Marichev O.I., Integrals and series, Vol. 3, More special functions, Gordon and Breach Science Publishers, New York, 1990.
  34. Qi F., Shi X.-T., Liu F.-F., Expansions of the exponential and the logarithm of power series and applications, Arab. J. Math. 6 (2017), 95-108.
  35. Saigo M., Srivastava H.M., The behavior of the zero-balanced hypergeometric series ${}_pF_{p-1}$ near the boundary of its convergence region, Proc. Amer. Math. Soc. 110 (1990), 71-76.
  36. Shpot M.A., Srivastava H.M., The Clausenian hypergeometric function $_3F_2$ with unit argument and negative integral parameter differences, Appl. Math. Comput. 259 (2015), 819-827, arXiv:1411.2455.
  37. Slater L.J., Generalized hypergeometric functions, Cambridge University Press, Cambridge, 1966.
  38. Srinivasa Rao K., Van der Jeugt J., Raynal J., Jagannathan R., Rajeswari V., Group theoretical basis for the terminating $_3F_2(1)$ series, J. Phys. A: Math. Gen. 25 (1992), 861-876.
  39. Srivastava H.M., Karlsson P.W., Multiple Gaussian hypergeometric series, Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester, 1985.
  40. Van der Jeugt J., Pitre S.N., Srinivasa Rao K., Transformation and summation formulas for double hypergeometric series, J. Comput. Appl. Math. 83 (1997), 185-193, arXiv:math.CA/9511219.
  41. Volkmer H., Wood J.J., A note on the asymptotic expansion of generalized hypergeometric functions, Anal. Appl. (Singap.) 12 (2014), 107-115.
  42. Wimp J., Explicit formulas for the associated Jacobi polynomials and some applications, Canad. J. Math. 39 (1987), 983-1000.

Previous article  Next article  Contents of Volume 17 (2021)