Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 17 (2021), 090, 9 pages      arXiv:2108.02603
Contribution to the Special Issue on Twistors from Geometry to Physics in honor of Roger Penrose

Spinors, Twistors and Classical Geometry

Nigel J. Hitchin
Mathematical Institute, Woodstock Road, Oxford, OX2 6GG, UK

Received August 07, 2021, in final form October 07, 2021; Published online October 10, 2021

The paper studies explicitly the Hitchin system restricted to the Higgs fields on a fixed very stable rank 2 bundle in genus 2 and 3. The associated families of quadrics relate to both the geometry of Penrose's twistor spaces and several classical results.

Key words: spinor; twistor; quadric; stable bundle.

pdf (338 kb)   tex (18 kb)  


  1. Atiyah M.F., Complex fibre bundles and ruled surfaces, Proc. London Math. Soc. 5 (1955), 407-434.
  2. Dolgachev I.V., Classical algebraic geometry. A modern view, Cambridge University Press, Cambridge, 2012.
  3. Gawędzki K., Tran-Ngoc-Bich P., Self-duality of the ${\rm SL}_2$ Hitchin integrable system at genus $2$, Comm. Math. Phys. 196 (1998), 641-670, arXiv:solv-int/9710025.
  4. Hausel T., Hitchin N.J., Multiplicity algebras for integrable systems, in preparation.
  5. Heu V., Loray F., Hitchin Hamiltonians in genus 2, in Analytic and Algebraic Geometry, Hindustan Book Agency, New Delhi, 2017, 153-172, arXiv:1506.02404.
  6. Hitchin N.J., Polygons and gravitons, Math. Proc. Cambridge Philos. Soc. 85 (1979), 465-476.
  7. Hitchin N.J., Kählerian twistor spaces, Proc. London Math. Soc. 43 (1981), 133-150.
  8. Hitchin N.J., Complex manifolds and Einstein's equations, in Twistor Geometry and Nonlinear Systems (Primorsko, 1980), Lecture Notes in Math., Vol. 970, Springer, Berlin - New York, 1982, 73-99.
  9. Hitchin N.J., Monopoles and geodesics, Comm. Math. Phys. 83 (1982), 579-602.
  10. Hitchin N.J., Twistor construction of Einstein metrics, in Global Riemannian Geometry (Durham, 1983), Ellis Horwood Ser. Math. Appl., Horwood, Chichester, 1984, 115-125.
  11. Hitchin N.J., Stable bundles and integrable systems, Duke Math. J. 54 (1987), 91-114.
  12. Hitchin N.J., Twistor spaces, Einstein metrics and isomonodromic deformations, J. Differential Geom. 42 (1995), 30-112.
  13. Hitchin N.J., Hypercomplex manifolds and the space of framings, in The Geometric Universe: Science, Geometry and the work of Roger Penrose (Oxford, 1996), Oxford University Press, Oxford, 1998, 9-30.
  14. Hitchin N.J., On the hyperkähler/quaternion Kähler correspondence, Comm. Math. Phys. 324 (2013), 77-106, arXiv:1210.0424.
  15. Hitchin N.J., Manifolds with holonomy $U^*(2m)$, Rev. Mat. Complut. 27 (2014), 351-368, arXiv:1403.7133.
  16. Hitchin N.J., The central sphere of an ALE space, Q. J. Math. 72 (2021), 253-276, arXiv:2008.05915.
  17. Hitchin N.J., Karlhede A., Lindström U., Roček M., Hyper-Kähler metrics and supersymmetry, Comm. Math. Phys. 108 (1987), 535-589.
  18. Hurtubise J., The intersection of two quadrics in ${\bf P}_5({\bf C})$ as a twistor space, Ann. Global Anal. Geom. 3 (1985), 185-195.
  19. Narasimhan M.S., Ramanan S., Moduli of vector bundles on a compact Riemann surface, Ann. of Math. 89 (1969), 14-51.
  20. Narasimhan M.S., Ramanan S., $2\theta$-linear systems on abelian varieties, in Vector Bundles on Algebraic Varieties (Bombay, 1984), Tata Inst. Fund. Res. Stud. Math., Vol. 11, Tata Inst. Fund. Res., Bombay, 1987, 415-427.
  21. Newstead P.E., Stable bundles of rank $2$ and odd degree over a curve of genus $2$, Topology 7 (1968), 205-215.
  22. Pauly C., Self-duality of Coble's quartic hypersurface and applications, Michigan Math. J. 50 (2002), 551-574.
  23. Penrose R., The nonlinear graviton, Gen. Relativity Gravitation 7 (1976), 171-176.
  24. van Geemen B., Previato E., On the Hitchin system, Duke Math. J. 85 (1996), 659-683, arXiv:alg-geom/9410015.

Previous article  Next article  Contents of Volume 17 (2021)