Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 17 (2021), 086, 28 pages      arXiv:1811.07572
Contribution to the Special Issue on Algebraic Structures in Perturbative Quantum Field Theory in honor of Dirk Kreimer for his 60th birthday

Algebraic Structures on Typed Decorated Rooted Trees

Loïc Foissy
Univ. Littoral Côte d'Opale, UR 2597LMPA, Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville, F-62100 Calais, France

Received February 02, 2021, in final form September 12, 2021; Published online September 21, 2021

Typed decorated trees are used by Bruned, Hairer and Zambotti to give a description of a renormalisation process on stochastic PDEs. We here study the algebraic structures on these objects: multiple pre-Lie algebras and related operads (generalizing a result by Chapoton and Livernet), noncommutative and cocommutative Hopf algebras (generalizing Grossman and Larson's construction), commutative and noncocommutative Hopf algebras (generalizing Connes and Kreimer's construction), bialgebras in cointeraction (generalizing Calaque, Ebrahimi-Fard and Manchon's result). We also define families of morphisms and in particular we prove that any Connes-Kreimer Hopf algebra of typed and decorated trees is isomorphic to a Connes-Kreimer Hopf algebra of non-typed and decorated trees (the set of decorations of vertices being bigger), through a contraction process, and finally obtain the Bruned-Hairer-Zambotti construction as a subquotient.

Key words: typed tree; combinatorial Hopf algebras; pre-Lie algebras; operads.

pdf (547 kb)   tex (32 kb)  


  1. Bergeron F., Labelle G., Leroux P., Combinatorial species and tree-like structures, Encyclopedia of Mathematics and its Applications, Vol. 67, Cambridge University Press, Cambridge, 1998.
  2. Bremner M.R., Dotsenko V., Algebraic operads. An algorithmic companion, CRC Press, Boca Raton, FL, 2016.
  3. Bruned Y., Singular KPZ type equations, avalaible at
  4. Bruned Y., Chandra A., Chevyrev I., Hairer M., Renormalising SPDEs in regularity structures, J. Eur. Math. Soc. (JEMS) 23 (2021), 869-947, arXiv:1711.10239.
  5. Bruned Y., Hairer M., Zambotti L., Algebraic renormalisation of regularity structures, Invent. Math. 215 (2019), 1039-1156, arXiv:1610.08468.
  6. Bruned Y., Manchon D., Algebraic deformation for SPDEs, arXiv:2011.05907.
  7. Calaque D., Ebrahimi-Fard K., Manchon D., Two interacting Hopf algebras of trees: a Hopf-algebraic approach to composition and substitution of B-series, Adv. in Appl. Math. 47 (2011), 282-308, arXiv:0806.2238.
  8. Chapoton F., Un endofoncteur de la catégorie des opérades, in Dialgebras and Related Operads, Lecture Notes in Math., Vol. 1763, Springer, Berlin, 2001, 105-110.
  9. Chapoton F., Livernet M., Pre-Lie algebras and the rooted trees operad, Int. Math. Res. Not. 2001 (2001), 395-408, arXiv:math.QA/0002069.
  10. Connes A., Kreimer D., Hopf algebras, renormalization and noncommutative geometry, Comm. Math. Phys. 199 (1998), 203-242, arXiv:hep-th/9808042.
  11. Dotsenko V., Griffin J., Cacti and filtered distributive laws, Algebr. Geom. Topol. 14 (2014), 3185-3225, arXiv:1109.5345.
  12. Foissy L., Algebraic structures associated to operads, arXiv:1702.05344.
  13. Foissy L., Generalized prelie and permutative algebras, arXiv:2104.00909.
  14. Grossman R., Larson R.G., Hopf-algebraic structure of combinatorial objects and differential operators, Israel J. Math. 72 (1990), 109-117.
  15. Hoffman M.E., Combinatorics of rooted trees and Hopf algebras, Trans. Amer. Math. Soc. 355 (2003), 3795-3811, arXiv:math.CO/0201253.
  16. Livernet M., A rigidity theorem for pre-Lie algebras, J. Pure Appl. Algebra 207 (2006), 1-18, arXiv:math.QA/0504296.
  17. Loday J.-L., Vallette B., Algebraic operads, Grundlehren der Mathematischen Wissenschaften, Vol. 346, Springer, Heidelberg, 2012.
  18. Manchon D., Zhang Y., Free pre-Lie family algebras, arXiv:2003.00917.
  19. Markl M., Shnider S., Stasheff J., Operads in algebra, topology and physics, Mathematical Surveys and Monographs, Vol. 96, Amer. Math. Soc., Providence, RI, 2002.
  20. Mathar R.J., Topologically distinct sets of non-intersecting circles in the plane, arXiv:1603.00077.
  21. Oudom J.-M., Guin D., Sur l'algèbre enveloppante d'une algèbre pré-Lie, C. R. Math. Acad. Sci. Paris 340 (2005), 331-336.
  22. Oudom J.-M., Guin D., On the Lie enveloping algebra of a pre-Lie algebra, J. K-Theory 2 (2008), 147-167, arXiv:math.QA/0404457.
  23. Panaite F., Relating the Connes-Kreimer and Grossman-Larson Hopf algebras built on rooted trees, Lett. Math. Phys. 51 (2000), 211-219, arXiv:math.QA/0003074.
  24. Sloane N.J.A., The on-line encyclopedia of integer sequences,
  25. Zhang Y., Gao X., Guo L., Matching Rota-Baxter algebras, matching dendriform algebras and matching pre-Lie algebras, J. Algebra 552 (2020), 134-170, arXiv:1909.10577.

Previous article  Next article  Contents of Volume 17 (2021)