Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 17 (2021), 080, 34 pages      arXiv:2102.09143

An Expansion Formula for Decorated Super-Teichmüller Spaces

Gregg Musiker, Nicholas Ovenhouse and Sylvester W. Zhang
School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA

Received March 31, 2021, in final form August 27, 2021; Published online September 01, 2021

Motivated by the definition of super-Teichmüller spaces, and Penner-Zeitlin's recent extension of this definition to decorated super-Teichmüller space, as examples of super Riemann surfaces, we use the super Ptolemy relations to obtain formulas for super $\lambda$-lengths associated to arcs in a bordered surface. In the special case of a disk, we are able to give combinatorial expansion formulas for the super $\lambda$-lengths associated to diagonals of a polygon in the spirit of Ralf Schiffler's $T$-path formulas for type $A$ cluster algebras. We further connect our formulas to the super-friezes of Morier-Genoud, Ovsienko, and Tabachnikov, and obtain partial progress towards defining super cluster algebras of type $A_n$. In particular, following Penner-Zeitlin, we are able to get formulas (up to signs) for the $\mu$-invariants associated to triangles in a triangulated polygon, and explain how these provide a step towards understanding odd variables of a super cluster algebra.

Key words: cluster algebras; Laurent polynomials; decorated Teichmüller spaces; supersymmetry.

pdf (628 kb)   tex (59 kb)  


  1. Berenstein A., Retakh V., Noncommutative marked surfaces, Adv. Math. 328 (2018), 1010-1087, arXiv:1510.02628.
  2. Berenstein A., Zelevinsky A., Quantum cluster algebras, Adv. Math. 195 (2005), 405-455, arXiv:math.QA/0404446.
  3. Cimasoni D., Reshetikhin N., Dimers on surface graphs and spin structures. I, Comm. Math. Phys. 275 (2007), 187-208, arXiv:math-ph/0608070.
  4. Cimasoni D., Reshetikhin N., Dimers on surface graphs and spin structures. II, Comm. Math. Phys. 281 (2008), 445-468, arXiv:0704.0273.
  5. Crane L., Rabin J.M., Super Riemann surfaces: uniformization and Teichmüller theory, Comm. Math. Phys. 113 (1988), 601-623.
  6. Fock V., Goncharov A., Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. (2006), 1-211, arXiv:math.AG/0311149.
  7. Fomin S., Shapiro M., Thurston D., Cluster algebras and triangulated surfaces. I. Cluster complexes, Acta Math. 201 (2008), 83-146, arXiv:math.RA/0608367.
  8. Fomin S., Zelevinsky A., Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), 497-529, arXiv:math.RT/0104151.
  9. Gekhtman M., Shapiro M., Vainshtein A., Cluster algebras and Weil-Petersson forms, Duke Math. J. 127 (2005), 291-311, arXiv:math.QA/0309138.
  10. Huang Y., Penner R.C., Zeitlin A.M., Super McShane identity, arXiv:1907.09978.
  11. Ip I.C.H., Penner R.C., Zeitlin A.M., $\mathcal{N}=2$ super-Teichmüller theory, Adv. Math. 336 (2018), 409-454, arXiv:1605.08094.
  12. Li L., Mixco J., Ransingh B., Srivastava A.K., An introduction to supersymmetric cluster algebras, Electron. J. Combin. 28 (2021), 1.30, 29 pages, arXiv:1708.03851.
  13. Morier-Genoud S., Ovsienko V., Tabachnikov S., Introducing supersymmetric frieze patterns and linear difference operators (with an appendix by Alexey Ustinov), Math. Z. 281 (2015), 1061-1087, arXiv:1501.07476.
  14. Musiker G., Schiffler R., Williams L., Positivity for cluster algebras from surfaces, Adv. Math. 227 (2011), 2241-2308, arXiv:0906.0748.
  15. Ovsienko V., A step towards cluster superalgebras, arXiv:1503.01894.
  16. Ovsienko V., Shapiro M., Cluster algebras with Grassmann variables, Electron. Res. Announc. Math. Sci. 26 (2019), 1-15, arXiv:1809.01860.
  17. Ovsienko V., Tabachnikov S., Dual numbers, weighted quivers, and extended Somos and Gale-Robinson sequences, Algebr. Represent. Theory 21 (2018), 1119-1132, arXiv:1705.01623.
  18. Penner R.C., Decorated Teichmüller theory, QGM Master Class Series, European Mathematical Society (EMS), Zürich, 2012.
  19. Penner R.C., Zeitlin A.M., Decorated super-Teichmüller space, J. Differential Geom. 111 (2019), 527-566, arXiv:1509.06302.
  20. Schiffler R., A cluster expansion formula ($A_n$ case), Electron. J. Combin. 15 (2008), 64, 9 pages, arXiv:math.RT/0611956.
  21. Shemyakova E., Voronov T., On super Plücker embedding and cluster algebras, arXiv:1906.12011.
  22. Yurikusa T., Cluster expansion formulas in type $A$, Algebr. Represent. Theory 22 (2019), 1-19, arXiv:1605.07557.

Previous article  Next article  Contents of Volume 17 (2021)