Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 17 (2021), 068, 66 pages      arXiv:1902.08298
Contribution to the Special Issue on Primitive Forms and Related Topics in honor of Kyoji Saito for his 77th birthday

Good Wild Harmonic Bundles and Good Filtered Higgs Bundles

Takuro Mochizuki
Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan

Received July 16, 2020, in final form June 28, 2021; Published online July 17, 2021

We prove the Kobayashi-Hitchin correspondence between good wild harmonic bundles and polystable good filtered $\lambda$-flat bundles satisfying a vanishing condition. We also study the correspondence for good wild harmonic bundles with the homogeneity with respect to a group action, which is expected to provide another way to construct Frobenius manifolds.

Key words: wild harmonic bundles; Higgs bundles; $\lambda$-flat bundles; Kobayashi-Hitchin correspondence.

pdf (955 kb)   tex (88 kb)  


  1. Barannikov S., Quantum periods. I. Semi-infinite variations of Hodge structures, Int. Math. Res. Not. 2001 (2001), 1243-1264, arXiv:math.AG/0006193.
  2. Biquard O., Fibrés de Higgs et connexions intégrables: le cas logarithmique (diviseur lisse), Ann. Sci. École Norm. Sup. (4) 30 (1997), 41-96.
  3. Biquard O., Boalch P., Wild non-abelian Hodge theory on curves, Compos. Math. 140 (2004), 179-204, arXiv:math.DG/0111098.
  4. Bogomolov F.A., Holomorphic tensors and vector bundles on projective manifolds, Math. USSR Izv. 13 (1979), 499-555.
  5. Borne N., Fibrés paraboliques et champ des racines, Int. Math. Res. Not. 2007 (2007), rnm049, 38 pages, arXiv:math.AG/0604458.
  6. Borne N., Sur les représentations du groupe fondamental d'une variété privée d'un diviseur à croisements normaux simples, Indiana Univ. Math. J. 58 (2009), 137-180, arXiv:0704.1236.
  7. Cecotti S., Vafa C., Topological-anti-topological fusion, Nuclear Phys. B 367 (1991), 359-461.
  8. Cecotti S., Vafa C., On classification of $N=2$ supersymmetric theories, Comm. Math. Phys. 158 (1993), 569-644, arXiv:hep-th/9211097.
  9. Coates T., Iritani H., Tseng H.H., Wall-crossings in toric Gromov-Witten theory. I. Crepant examples, Geom. Topol. 13 (2009), 2675-2744, arXiv:math.AG/0611550.
  10. Collier B., Wentworth R., Conformal limits and the Białynicki-Birula stratification of the space of $\lambda$-connections, Adv. Math. 350 (2019), 1193-1225, arXiv:1808.01622.
  11. Corlette K., Flat $G$-bundles with canonical metrics, J. Differential Geom. 28 (1988), 361-382.
  12. Cornalba M., Griffiths P., Analytic cycles and vector bundles on non-compact algebraic varieties, Invent. Math. 28 (1975), 1-106.
  13. Donagi R., Pantev T., Geometric Langlands and non-abelian Hodge theory, in Geometry, Analysis, and Algebraic Geometry: Forty Years of the Journal of Differential Geometry, Surv. Differ. Geom., Vol. 13, Int. Press, Somerville, MA, 2009, 85-116.
  14. Donaldson S.K., A new proof of a theorem of Narasimhan and Seshadri, J. Differential Geom. 18 (1983), 269-277.
  15. Donaldson S.K., Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. 50 (1985), 1-26.
  16. Donaldson S.K., Infinite determinants, stable bundles and curvature, Duke Math. J. 54 (1987), 231-247.
  17. Donaldson S.K., Twisted harmonic maps and the self-duality equations, Proc. London Math. Soc. 55 (1987), 127-131.
  18. Dubrovin B., Geometry and integrability of topological-antitopological fusion, Comm. Math. Phys. 152 (1993), 539-564, arXiv:hep-th/9206037.
  19. Gieseker D., On a theorem of Bogomolov on Chern classes of stable bundles, Amer. J. Math. 101 (1979), 77-85.
  20. Grothendieck A., Techniques de construction et théorèmes d'existence en géométrie algébrique. IV. Les schémas de Hilbert, in Séminaire Bourbaki, Vol. 6, Soc. Math. France, Paris, 1961, Exp. No. 221, 28 pages.
  21. Hertling C., $tt^*$ geometry, Frobenius manifolds, their connections, and the construction for singularities, J. Reine Angew. Math. 555 (2003), 77-161, arXiv:math.AG/0203054.
  22. Hertling C., Sevenheck C., Nilpotent orbits of a generalization of Hodge structures, J. Reine Angew. Math. 609 (2007), 23-80, arXiv:math.AG/0603564.
  23. Hertling C., Sevenheck C., Limits of families of Brieskorn lattices and compactified classifying spaces, Adv. Math. 223 (2010), 1155-1224, arXiv:0805.4777.
  24. Hitchin N., The self-duality equations on a Riemann surface, Proc. London Math. Soc. 55 (1987), 59-126.
  25. Hitchin N., A note on vanishing theorems, in Geometry and Analysis on Manifolds, Progr. Math., Vol. 308, Birkhäuser/Springer, Cham, 2015, 373-382.
  26. Hu Z., Huang P., Simpson-Mochizuki correspondence for $\lambda$-flat bundles, arXiv:1905.10765.
  27. Huang P., Non-Abelian Hodge theory and related topics, SIGMA 16 (2020), 029, 34 pages, arXiv:1908.08348.
  28. Iritani H., $tt^{\ast}$-geometry in quantum cohomology, arXiv:0906.1307.
  29. Iyer J.N.N., Simpson C.T., A relation between the parabolic Chern characters of the de Rham bundles, Math. Ann. 338 (2007), 347-383, arXiv:math.AG/0603677.
  30. Jost J., Zuo K., Harmonic maps of infinite energy and rigidity results for representations of fundamental groups of quasiprojective varieties, J. Differential Geom. 47 (1997), 469-503.
  31. Kashiwara M., Semisimple holonomic $\mathcal D$-modules, in Topological Field Theory, Primitive Forms and Related Topics (Kyoto, 1996), Progr. Math., Vol. 160, Birkhäuser Boston, Boston, MA, 1998, 267-271.
  32. Kobayashi S., First Chern class and holomorphic tensor fields, Nagoya Math. J. 77 (1980), 5-11.
  33. Kobayashi S., Curvature and stability of vector bundles, Proc. Japan Acad. Ser. A Math. Sci. 58 (1982), 158-162.
  34. Kobayashi S., Differential geometry of holomorphic vector bundles, Seminary Note in the University of Tokyo, Vol. 41, University of Tokyo, Japan, 1982.
  35. Kobayashi S., Differential geometry of complex vector bundles, Publications of the Mathematical Society of Japan, Vol. 15, Princeton University Press, Princeton, NJ, 1987.
  36. Kotake T., Ochiai T. (Editors), Non-linear problems in geometry, Proceedings of the Sixth International Taniguchi Symposium, The Taniguchi Foundation, Tohoku University, Japan, 1979.
  37. Li J., Hermitian-Einstein metrics and Chern number inequalities on parabolic stable bundles over Kähler manifolds, Comm. Anal. Geom. 8 (2000), 445-475.
  38. Li J., Narasimhan M.S., Hermitian-Einstein metrics on parabolic stable bundles, Acta Math. Sin. (Engl. Ser.) 15 (1999), 93-114.
  39. Lübke M., Chernklassen von Hermite-Einstein-Vektorbündeln, Math. Ann. 260 (1982), 133-141.
  40. Lübke M., Stability of Einstein-Hermitian vector bundles, Manuscripta Math. 42 (1983), 245-257.
  41. Lübke M., Teleman A., The universal Kobayashi-Hitchin correspondence on Hermitian manifolds, Mem. Amer. Math. Soc. 183 (2006), vi+97 pages, arXiv:math.DG/0402341.
  42. Maruyama M., Yokogawa K., Moduli of parabolic stable sheaves, Math. Ann. 293 (1992), 77-99.
  43. Mehta V.B., Ramanathan A., Semistable sheaves on projective varieties and their restriction to curves, Math. Ann. 258 (1982), 213-224.
  44. Mehta V.B., Ramanathan A., Restriction of stable sheaves and representations of the fundamental group, Invent. Math. 77 (1984), 163-172.
  45. Mehta V.B., Seshadri C.S., Moduli of vector bundles on curves with parabolic structures, Math. Ann. 248 (1980), 205-239.
  46. Mochizuki T., Kobayashi-Hitchin correspondence for tame harmonic bundles and an application, Astérisque 309 (2006), viii+117 pages.
  47. Mochizuki T., Asymptotic behaviour of tame harmonic bundles and an application to pure twistor $D$-modules. I, Mem. Amer. Math. Soc. 185 (2007), xii+324 pages.
  48. Mochizuki T., Asymptotic behaviour of tame harmonic bundles and an application to pure twistor $D$-modules. II, Mem. Amer. Math. Soc. 185 (2007), xii+565 pages.
  49. Mochizuki T., Kobayashi-Hitchin correspondence for tame harmonic bundles. II, Geom. Topol. 13 (2009), 359-455, arXiv:math.DG/0602266.
  50. Mochizuki T., Asymptotic behavior of variation of pure polarized TERP structure, Publ. Res. Inst. Math. Sci. 47 (2011), 419-534, arXiv:0811.1384.
  51. Mochizuki T., Wild harmonic bundles and wild pure twistor $D$-modules, Astérisque 340 (2011), x+607.
  52. Mochizuki T., Harmonic bundles and Toda lattices with opposite sign I, RIMS Kôkyûroku Bessatsu, to appear, arXiv:1301.1718.
  53. Mochizuki T., Harmonic bundles and Toda lattices with opposite sign II, Comm. Math. Phys. 328 (2014), 1159-1198, arXiv:1301.1718.
  54. Mochizuki T., Wild harmonic bundles and twistor $\mathcal D$-modules, in Proceedings of the International Congress of Mathematicians - Seoul 2014, Vol. 1, Kyung Moon Sa, Seoul, 2014, 499-527.
  55. Mochizuki T., Mixed twistor $\mathcal D$-modules, Lecture Notes in Math., Vol. 2125, Springer, Cham, 2015.
  56. Mumford D., Projective invariants of projective structures and applications, in Proc. Internat. Congr. Mathematicians (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm, 1963, 526-530.
  57. Mumford D., Lectures on curves on an algebraic surface, Annals of Mathematics Studies, Vol. 59, Princeton University Press, Princeton, N.J., 1966.
  58. Narasimhan M.S., Seshadri C.S., Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math. 82 (1965), 540-567.
  59. Sabbah C., Harmonic metrics and connections with irregular singularities, Ann. Inst. Fourier (Grenoble) 49 (1999), 1265-1291, arXiv:math.AG/9905039.
  60. Sabbah C., Polarizable twistor $\mathcal D$-modules, Astérisque 300 (2005), vi+208 pages, arXiv:math.AG/0503038.
  61. Saito K., Takahashi A., From primitive forms to Frobenius manifolds, in From Hodge Theory to Integrability and TQFT $tt^*$-Geometry, Proc. Sympos. Pure Math., Vol. 78, Amer. Math. Soc., Providence, RI, 2008, 31-48.
  62. Simpson C.T., Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, J. Amer. Math. Soc. 1 (1988), 867-918.
  63. Simpson C.T., Harmonic bundles on noncompact curves, J. Amer. Math. Soc. 3 (1990), 713-770.
  64. Simpson C.T., Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 5-95.
  65. Simpson C.T., The Hodge filtration on nonabelian cohomology, in Algebraic Geometry - Santa Cruz 1995, Proc. Sympos. Pure Math., Vol. 62, Amer. Math. Soc., Providence, RI, 1997, 217-281, arXiv:alg-geom/9604005.
  66. Simpson C.T., Mixed twistor structures, arXiv:alg-geom/9705006.
  67. Simpson C.T., Iterated destabilizing modifications for vector bundles with connection, in Vector Bundles and Complex Geometry, Contemp. Math., Vol. 522, Amer. Math. Soc., Providence, RI, 2010, 183-206, arXiv:0812.3472.
  68. Siu Y.T., Techniques of extension of analytic objects, Lecture Notes in Pure and Applied Mathematics, Vol. 8, Marcel Dekker, Inc., New York, 1974.
  69. Siu Y.T., The complex-analyticity of harmonic maps and the strong rigidity of compact Kähler manifolds, Ann. of Math. 112 (1980), 73-111.
  70. Steer B., Wren A., The Donaldson-Hitchin-Kobayashi correspondence for parabolic bundles over orbifold surfaces, Canad. J. Math. 53 (2001), 1309-1339.
  71. Takemoto F., Stable vector bundles on algebraic surfaces, Nagoya Math. J. 47 (1972), 29-48.
  72. Takemoto F., Stable vector bundles on algebraic surfaces. II, Nagoya Math. J. 52 (1973), 173-195.
  73. Uhlenbeck K., Yau S.-T., On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Comm. Pure Appl. Math. 39 (1986), S257-S293.
  74. Uhlenbeck K.K., Connections with $L^{p}$ bounds on curvature, Comm. Math. Phys. 83 (1982), 31-42.

Previous article  Next article  Contents of Volume 17 (2021)