Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 17 (2021), 066, 81 pages      arXiv:2009.05993

Manin Matrices for Quadratic Algebras

Alexey Silantyev ab
a) Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
b) State University ''Dubna'', 141980 Dubna, Moscow region, Russia

Received December 11, 2020, in final form June 26, 2021; Published online July 12, 2021

We give a general definition of Manin matrices for arbitrary quadratic algebras in terms of idempotents. We establish their main properties and give their interpretation in terms of the category theory. The notion of minors is generalised for a general Manin matrix. We give some examples of Manin matrices, their relations with Lax operators and obtain the formulae for some minors. In particular, we consider Manin matrices of the types $B$, $C$ and $D$ introduced by A. Molev and their relation with Brauer algebras. Infinite-dimensional Manin matrices and their connection with Lax operators are also considered.

Key words: Manin matrices; quantum groups; quadratic algebras.

pdf (1025 kb)   tex (88 kb)  


  1. Arnaudon D., Avan J., Crampé N., Frappat L., Ragoucy E., $R$-matrix presentation for super-Yangians $Y({\rm osp}(m|2n))$, J. Math. Phys. 44 (2003), 302-308, arXiv:math.QA/0111325.
  2. Arnaudon D., Molev A., Ragoucy E., On the $R$-matrix realization of Yangians and their representations, Ann. Henri Poincaré 7 (2006), 1269-1325, arXiv:math.QA/0511481.
  3. Brauer R., On algebras which are connected with the semisimple continuous groups, Ann. of Math. 38 (1937), 857-872.
  4. Chervov A., Falqui G., Manin matrices and Talalaev's formula, J. Phys. A: Math. Theor. 41 (2008), 194006, 28 pages, arXiv:0711.2236.
  5. Chervov A., Falqui G., Rubtsov V., Algebraic properties of Manin matrices. I, Adv. in Appl. Math. 43 (2009), 239-315, arXiv:0901.0235.
  6. Chervov A., Falqui G., Rubtsov V., Silantyev A., Algebraic properties of Manin matrices II: $q$-analogues and integrable systems, Adv. in Appl. Math. 60 (2014), 25-89, arXiv:1210.3529.
  7. Chervov A.V., Molev A.I., On higher-order Sugawara operators, Int. Math. Res. Not. 2009 (2009), 1612-1635, arXiv:0808.1947.
  8. de Vega H.J., Yang-Baxter algebras, conformal invariant models and quantum groups, in Integrable Systems in Quantum Field Theory and Statistical Mechanics, Adv. Stud. Pure Math., Vol. 19, Academic Press, Boston, MA, 1989, 567-639.
  9. Faddeev L.D., Reshetikhin N.Yu., Takhtajan L.A., Quantization of Lie groups and Lie algebras, in Algebraic Analysis, Vol. I, Academic Press, Boston, MA, 1988, 129-139.
  10. Garoufalidis S., Lê T.T.Q., Zeilberger D., The quantum MacMahon master theorem, Proc. Natl. Acad. Sci. USA 103 (2006), 13928-13931, arXiv:math.QA/0303319.
  11. Gurevich D.I., Algebraic aspects of the quantum Yang-Baxter equation, Leningrad Math. J. 2 (1991), 801-828.
  12. Gurevich D.I., Saponov P.A., Determinants in quantum matrix algebras and integrable systems, Theoret. and Math. Phys. 207 (2021), 626-639, arXiv:1906.07287.
  13. Hu J., Xiao Z., On tensor spaces for Birman-Murakami-Wenzl algebras, J. Algebra 324 (2010), 2893-2922.
  14. Humphreys J.E., Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, Vol. 29, Cambridge University Press, Cambridge, 1990.
  15. Isaev A., Ogievetsky O., Half-quantum linear algebra, in Symmetries and Groups in Contemporary Physics, Nankai Ser. Pure Appl. Math. Theoret. Phys., Vol. 11, World Sci. Publ., Hackensack, NJ, 2013, 479-486, arXiv:1303.3991.
  16. Isaev A., Ogievetsky O., Pyatov P., Generalized Cayley-Hamilton-Newton identities, Czechoslovak J. Phys. 48 (1998), 1369-1374, arXiv:math.QA/9809047.
  17. Isaev A., Ogievetsky O., Pyatov P., On quantum matrix algebras satisfying the Cayley-Hamilton-Newton identities, J. Phys. A: Math. Gen. 32 (1999), L115-L121, arXiv:math.QA/9809170.
  18. Isaev A.P., Molev A.I., Fusion procedure for the Brauer algebra, St. Petersburg Math. J. 22 (2011), 437-446, arXiv:0812.4113.
  19. Isaev A.P., Molev A.I., Ogievetsky O.V., A new fusion procedure for the Brauer algebra and evaluation homomorphisms, Int. Math. Res. Not. 2012 (2012), 2571-2606, arXiv:1101.1336.
  20. Isaev A.P., Rubakov V.A., Theory of groups and symmetries. Representations of groups and Lie algebras, applications, World Sci. Publ. Co. Pte. Ltd., Hackensack, NJ, 2021.
  21. Iyudu N., Shkarin S., Three dimensional Sklyanin algebras and Gröbner bases, J. Algebra 470 (2017), 379-419, arXiv:1601.00564.
  22. MacLane S., Categories for the working mathematician, Graduate Texts in Mathematics, Vol. 5, Springer-Verlag, New York - Berlin, 1971.
  23. Manin Yu.I., Some remarks on Koszul algebras and quantum groups, Ann. Inst. Fourier (Grenoble) 37 (1987), 191-205.
  24. Manin Yu.I., Quantum groups and noncommutative geometry, Université de Montréal, Centre de Recherches Mathématiques, Montreal, QC, 1988.
  25. Manin Yu.I., Multiparametric quantum deformation of the general linear supergroup, Comm. Math. Phys. 123 (1989), 163-175.
  26. Manin Yu.I., Topics in noncommutative geometry, M.B. Porter Lectures, Princeton University Press, Princeton, NJ, 1991.
  27. Manin Yu.I., Notes on quantum groups and quantum de Rham complexes, Theoret. and Math. Phys. 92 (1992), 997-1019.
  28. Molev A., Sugawara operators for classical Lie algebras, Mathematical Surveys and Monographs, Vol. 229, Amer. Math. Soc., Providence, RI, 2018.
  29. Molev A., Nazarov M., Ol'shanskii G., Yangians and classical Lie algebras, Russian Math. Surveys 51 (1996), 205-282, arXiv:hep-th/9409025.
  30. Molev A., Ragoucy E., The MacMahon master theorem for right quantum superalgebras and higher Sugawara operators for $\widehat{\mathfrak{gl}}_{m|n}$, Mosc. Math. J. 14 (2014), 83-119, arXiv:0911.3447.
  31. Nazarov M., Young's orthogonal form for Brauer's centralizer algebra, J. Algebra 182 (1996), 664-693.
  32. Pyatov P.N., Saponov P.A., Characteristic relations for quantum matrices, J. Phys. A: Math. Gen. 28 (1995), 4415-4421, arXiv:q-alg/9502012.
  33. Reshetikhin N.Yu., Takhtadzhyan L.A., Faddeev L.D., Quantization of Lie groups and Lie algebras, Leningrad Math. J. 1 (1990), 193-225.
  34. Rubtsov V., Silantyev A., Talalaev D., Manin matrices, quantum elliptic commutative families and characteristic polynomial of elliptic Gaudin model, SIGMA 5 (2009), 110, 22 pages, arXiv:0908.4064.
  35. Talalaev D.V., The quantum Gaudin system, Funct. Anal. Appl. 40 (2006), 73-77, arXiv:hep-th/0404153.

Previous article  Next article  Contents of Volume 17 (2021)