Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 17 (2021), 065, 19 pages      arXiv:2106.12071
Contribution to the Special Issue on Algebraic Structures in Perturbative Quantum Field Theory in honor of Dirk Kreimer for his 60th birthday

New Techniques for Worldline Integration

James P. Edwards a, C. Moctezuma Mata a, Uwe Müller b and Christian Schubert a
a) Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Apdo. Postal 2-82, C.P. 58040, Morelia, Michoacan, Mexico
b) Brandenburg an der Havel, Brandenburg, Germany

Received March 01, 2021, in final form June 23, 2021; Published online July 03, 2021

The worldline formalism provides an alternative to Feynman diagrams in the construction of amplitudes and effective actions that shares some of the superior properties of the organization of amplitudes in string theory. In particular, it allows one to write down integral representations combining the contributions of large classes of Feynman diagrams of different topologies. However, calculating these integrals analytically without splitting them into sectors corresponding to individual diagrams poses a formidable mathematical challenge. We summarize the history and state of the art of this problem, including some natural connections to the theory of Bernoulli numbers and polynomials and multiple zeta values.

Key words: worldline formalism; Bernoulli numbers; Bernoulli polynomials; Feynman diagram.

pdf (980 kb)   tex (1342 kb)  


  1. Affleck I.K., Alvarez O., Manton N.S., Pair production at strong coupling in weak external fields, Nuclear Phys. B 197 (1982), 509-519.
  2. Ahmadiniaz N., Balli F.M., Corradini O., Dávila J.M., Schubert C., Compton-like scattering of a scalar particle with $N$ photons and one graviton, Nuclear Phys. B 950 (2020), 114877, 21 pages, arXiv:1908.03425.
  3. Ahmadiniaz N., Bastianelli F., Corradini O., Dressed scalar propagator in a non-Abelian background from the worldline formalism, Phys. Rev. D 93 (2016), 0250335, 13 pages, Addendum, Phys. Rev. D 93 (2016), 049904, arXiv:1508.05144.
  4. Ahmadiniaz N., Corradini O., D'Ascanio D., Estrada-Jiménez S., Pisani P., Noncommutative $\rm U(1)$ gauge theory from a worldline perspective, J. High Energy Phys. 2015 (2015), no. 11, 069, 28 pages, arXiv:1507.07033.
  5. Ahmadiniaz N., Corradini O., Edwards J.P., Pisani P., ${\rm U}(N)$ Yang-Mills in non-commutative space time, J. High Energy Phys. 2019 (2019), no. 4, 067, 34 pages, arXiv:1811.07362.
  6. Ahmadiniaz N., Lopez-Arcos C., Lopez-Lopez M.A., Schubert C., The QED four-photon amplitudes off-shell: part 1, arXiv:2012.11791.
  7. Ahmadiniaz N., Lopez-Arcos C., Lopez-Lopez M.A., Schubert C., The QED four-photon amplitudes off-shell: parts 2-4, in preparation.
  8. Ahmadiniaz N., Schubert C., QCD gluon vertices from the string-inspired formalism, Internat. J. Modern Phys. E 26 (2016), 1642004, 20 pages, arXiv:1811.10780.
  9. Alvarez-Gaumé L., Supersymmetry and the Atiyah-Singer index theorem, Comm. Math. Phys. 90 (1983), 161-173.
  10. Alvarez-Gaumé L., Witten E., Gravitational anomalies, Nuclear Phys. B 234 (1984), 269-330.
  11. Baikov P.A., Chetyrkin K.G., Kühn J.H., Rittinger J., Vector correlator in massless QCD at order $\mathcal{O}\big(\alpha_s^4\big)$ and the QED $\beta$-function at five loop, J. High Energy Phys. 2012 (2012), no. 12, 017, 14 pages, arXiv:1206.1284.
  12. Balachandran A.P., Salomonson P., Skagerstam B.-S., Winnberg J.-O., Classical description of a particle interacting with a non-Abelian gauge field, Phys. Rev. D 15 (1977), 2308-2317.
  13. Barducci A., Casalbuoni R., Lusanna L., Classical scalar and spinning particles interacting with external Yang-Mills fields, Nuclear Phys. B 124 (1977), 93-108.
  14. Bastianelli F., The path integral for a particle in curved spaces and Weyl anomalies, Nuclear Phys. B 376 (1992), 113-126, arXiv:hep-th/9112035.
  15. Bastianelli F., Bonezzi R., One-loop quantum gravity from a worldline viewpoint, J. High Energy Phys. 2013 (2013), no. 7, 016, 23 pages, arXiv:1304.7135.
  16. Bastianelli F., Bonezzi R., Corradini O., Latini E., Effective action for higher spin fields on (A)dS backgrounds, J. High Energy Phys. 2012 (2012), no. 12, 113, 26 pages, arXiv:1210.4649.
  17. Bastianelli F., Bonezzi R., Corradini O., Latini E., Particles with non abelian charges, J. High Energy Phys. 2013 (2013), no. 10, 098, 13 pages, arXiv:1309.1608.
  18. Bastianelli F., Bonezzi R., Corradini O., Latini E., One-loop quantum gravity from the $\mathcal N = 4$ spinning particle, J. High Energy Phys. 2019 (2019), no. 11, 124, 15 pages, arXiv:1909.05750.
  19. Bastianelli F., Corradini O., Dávila J.M., Schubert C., On the low-energy limit of one-loop photon-graviton amplitudes, Phys. Lett. B 716 (2012), 345-349, arXiv:1202.4502.
  20. Bastianelli F., Corradini O., Latini E., Higher spin fields from a worldline perspective, J. High Energy Phys. 2007 (2007), no. 2, 072, 19 pages, arXiv:hep-th/0701055.
  21. Bastianelli F., Corradini O., Pisani P.A.G., Worldline approach to quantum field theories on flat manifolds with boundaries, J. High Energy Phys. 2007 (2007), no. 2, 059, 18 pages, arXiv:hep-th/0612236.
  22. Bastianelli F., Corradini O., Pisani P.A.G., Schubert C., Scalar heat kernel with boundary in the worldline formalism, J. High Energy Phys. 2008 (2008), no. 10, 095, 21 pages, arXiv:0809.0652.
  23. Bastianelli F., Corradini O., van Nieuwenhuizen P., Dimensional regularization of the path integral in curved space on an infinite time interval, Phys. Lett. B 490 (2000), 154-162, arXiv:hep-th/0007105.
  24. Bastianelli F., Corradini O., van Nieuwenhuizen P., Dimensional regularization of nonlinear sigma models on a finite time interval, Phys. Lett. B 494 (2000), 161-167, arXiv:hep-th/0008045.
  25. Bastianelli F., Corradini O., Zirotti A., BRST treatment of zero modes for the worldline formalism in curved space, J. High Energy Phys. 2004 (2004), no. 1, 023, 34 pages, arXiv:hep-th/0312064.
  26. Bastianelli F., Dávila J.M., Schubert C., Gravitational corrections to the Euler-Heisenberg Lagrangian, J. High Energy Phys. 2009 (2009), no. 3, 086, 26 pages, arXiv:0812.4849.
  27. Bastianelli F., Nucamendi U., Schubert C., Villanueva V.M., One loop photon-graviton mixing in an electromagnetic field: part 2, J. High Energy Phys. 2007 (2007), no. 11, 099, 23 pages, arXiv:0710.5572.
  28. Bastianelli F., Schubert C., One loop photon-graviton mixing in an electromagnetic field: part 1, J. High Energy Phys. 2005 (2005), no. 2, 069, 21 pages, arXiv:gr-qc/0412095.
  29. Bastianelli F., van Nieuwenhuizen P., Path integrals and anomalies in curved space, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2006.
  30. Bastianelli F., Zirotti A., Worldline formalism in a gravitational background, Nuclear Phys. B 642 (2002), 372-388, arXiv:hep-th/0205182.
  31. Bern Z., Kosower D.A., Efficient calculation of one-loop QCD amplitudes, Phys. Rev. Lett. 66 (1991), 1669-1672.
  32. Bern Z., Kosower D.A., The computation of loop amplitudes in gauge theories, Nuclear Phys. B 379 (1992), 451-561.
  33. Bonezzi R., Corradini O., Franchino Viñas S.A., Pisani P.A.G., Worldline approach to noncommutative field theory, J. Phys. A: Math. Theor. 45 (2012), 405401, 15 pages, arXiv:1204.1013.
  34. Broadhurst D.J., Delbourgo R., Kreimer D., Unknotting the polarized vacuum of quenched QED, Phys. Lett. B 421 (19896), 421-428, arXiv:hep-ph/9509296.
  35. Cecotti S., Girardello L., Functional measure, topology and dynamical supersymmetry breaking, Phys. Lett. B 110 (1982), 39-43.
  36. Corradini O., Edwards J.P., Huet I., Manzo L., Pisani P., Worldline formalism for a confined scalar field, J. High Energy Phys. 2019 (2019), no. 8, 037, 20 pages, arXiv:1905.00945.
  37. Corradini O., Muratori M., A Monte Carlo approach to the worldline formalism in curved space, J. High Energy Phys. 2020 (2020), no. 11, 169, 22 pages, arXiv:2006.02911.
  38. Costantini V., De Tollis B., Pistoni G., Nonlinear effects in quantum electrodynamics, Nuovo Cimento A 2 (1971), 733-787.
  39. Davydychev A.I., Four-point function in general kinematics through geometrical splitting and reduction, J. Phys. Conf. Ser. 1085 (2018), 052016, 8 pages, arXiv:1711.07351.
  40. de Boer J., Peeters B., Skenderis K., van Nieuwenhuizen P., Loop calculations in quantum-mechanical non-linear sigma models, Nuclear Phys. B 446 (1995), 211-222, arXiv:hep-th/9504097.
  41. D'Hoker E., Gagné D.G., Worldline path integrals for fermions with scalar, pseudoscalar and vector couplings, Nuclear Phys. B 467 (1996), 272-296, arXiv:hep-th/9508131.
  42. D'Hoker E., Gagné D.G., Worldline path integrals for fermions with general couplings, Nuclear Phys. B 467 (1996), 297-312, arXiv:hep-th/9512080.
  43. Dunne G.V., Schubert C., Two-loop self-dual Euler-Heisenberg Lagrangians. I. Real part and helicity amplitudes, J. High Energy Phys. 2002 (2002), no. 8, 053, 25 pages, arXiv:hep-th/0205004.
  44. Dunne G.V., Schubert C., Two-loop self-dual Euler-Heisenberg Lagrangians. II. Imaginary part and Borel analysis, J. High Energy Phys. 2002 (2002), no. 6, 042, 29 pages, arXiv:hep-th/0205005.
  45. Dunne G.V., Schubert C., Worldline instantons and pair production in inhomogenous fields, Phys. Rev. D 72 (2005), 105004, 12 pages, arXiv:hep-th/0507174.
  46. Dunne G.V., Schubert C., Bernoulli number identities from quantum field theory and topological string theory, Commun. Number Theory Phys. 7 (2013), 225-249, arXiv:math.NT/0406610.
  47. Edwards J.P., Gerber U., Schubert C., Trejo M.A., Tsiftsi T., Weber A., Applications of the worldline Monte Carlo formalism in quantum mechanics, Ann. Physics 411 (2019), 167966, 44 pages, arXiv:2019.16796.
  48. Edwards J.P., Huet A., Schubert C., On the low-energy limit of the QED $N$-photon amplitudes: part 2, Nuclear Phys. B 935 (2018), 198-209, arXiv:1807.10697.
  49. Edwards J.P., Schubert C., Quantum mechanical path integrals in the first quantised approach to quantum field theory, arXiv:1912.10004.
  50. Faber C., Pandharipande R., Hodge integrals and Gromov-Witten theory, Invent. Math. 139 (2000), 173-199, arXiv:math.AG/9810173.
  51. Feynman R.P., Mathematical formulation of the quantum theory of electromagnetic interaction, Phys. Rev. 80 (1950), 440-457.
  52. Feynman R.P., An operator calculus having applications in quantum electrodynamics, Phys. Rev. 84 (1951), 108-128.
  53. Fleischer J., Jegerlehner F., Tarasov O.V., A new hypergeometric representation of one-loop scalar integrals in $d$ dimensions, Nuclear Phys. B 672 (2003), 303-328, arXiv:hep-ph/0307113.
  54. Fliegner D., Haberl P., Schmidt M.G., Schubert C., The higher derivative expansion of the effective action by the string inspired method, II, Ann. Physics 264 (1998), 51-74, arXiv:hep-th/9707189.
  55. Fliegner D., Schmidt M.G., Schubert C., The higher derivative expansion of the effective action by the string-inspired method. I, Z. Phys. C 64 (1994), 111-116, arXiv:hep-ph/9401221.
  56. Fradkin E.S., Application of functional methods in quantum field theory and quantum statistics. II, Nuclear Phys. 76 (1966), 588-624.
  57. Friedan D., Windey P., Supersymmetric derivation of the Atiyah-Singer index and the chiral anomaly, Nuclear Phys. B 235 (1984), 395-416.
  58. Gies H., Karbstein F., An addendum to the Heisenberg-Euler effective action beyond one loop, J. High Energy Phys. 2017 (2017), no. 3, 108, 35 pages, arXiv:1612.07251.
  59. Gies H., Klingmüller K., Pair production in inhomogeneous fields, Phys. Rev. D 72 (2005), 065001, 11 pages, arXiv:hep-ph/0505099.
  60. Gies H., Langfeld K., Quantum diffusion of magnetic fields in a numerical worldline approach, Nuclear Phys. B 613 (2001), 353-365, arXiv:hep-ph/0102185.
  61. Gies H., Langfeld K., Moyaerts L., Casimir effect on the worldline, J. High Energy Phys. 2003 (2003), no. 6, 018, 29 pages, arXiv:hep-th/0303264.
  62. Hollowood T.J., Shore G.M., The refractive index of curved spacetime: the fate of causality in QED, Nuclear Phys. B 795 (2008), 138-171, arXiv:0707.2303.
  63. Kiem Y., Kim Y., Ryou C., Sato H.-T., One-loop noncommutative $\rm U(1)$ gauge theory from bosonic worldline approach, Nuclear Phys. B 630 (2002), 55-86, arXiv:hep-th/0112176.
  64. Martin L.C., Schubert C., Villanueva Sandoval V.M., On the low-energy limit of the QED $N$-photon amplitudes, Nuclear Phys. B 668 (2003), 335-344, arXiv:hep-th/0301022.
  65. McKeon D.G.C., Schubert C., A new approach to axial vector model calculations, Phys. Lett. B 440 (1998), 101-107, arXiv:hep-th/9807072.
  66. Mondragón M., Nellen L., Schmidt M.G., Schubert C., Yukawa couplings for the spinning particle and the world-line formalism, Phys. Lett. B 351 (1995), 200-205, arXiv:hep-th/9502125.
  67. Mondragón M., Nellen L., Schmidt M.G., Schubert C., Axial couplings on the world-line, Phys. Lett. B 366 (1996), 212-219, arXiv:hep-th/9510036.
  68. Mueller N., Tarasov A., Venugopalan R., Deeply inelastic scattering structure functions on a hybrid quantum computer, Phys. Rev. D 102 (2020), 016007, 15 pages, arXiv:1908.07051.
  69. Müller U., Schubert C., A quantum field theoretical representation of Euler-Zagier sums, Int. J. Math. Math. Sci. 31 (2002), 127-148, arXiv:math.QA/9908067.
  70. Nieuwenhuis T., Tjon J.A., Nonperturbative study of generalized ladder graphs in a $\varphi^2 \chi$ theory, Phys. Rev. Lett. 77 (1996), 814-817, arXiv:hep-ph/9606403.
  71. Phan K.H., Riemann T., Scalar 1-loop Feynman integrals as meromorphic functions in space-time dimension $d$, Phys. Lett. B 791 (2019), 257-264, arXiv:1812.10975.
  72. Polyakov A.M., Gauge fields and strings, Contemporary Concepts in Physics, Vol. 3, Harwood Academic Publishers, Chur, 1987.
  73. Schubert C., Perturbative quantum field theory in the string-inspired formalism, Phys. Rep. 355 (2001), 73-234, arXiv:hep-th/0101036.
  74. Strassler M.J., Field theory without Feynman diagrams: a demonstration using actions induced by heavy particles, sLAC-PUB-5978, 1992, 65 pages, unpublished.
  75. Strassler M.J., Field theory without Feynman diagrams: one-loop effective actions, Nuclear Phys. B 385 (1992), 145-184, arXiv:hep-ph/9205205.
  76. Strassler M.J., Two-loop Yang-Mills theory in the world-line formalism and an Euler-Heisenberg type action, Nuclear Phys. B 579 (2000), 492-524, arXiv:hep-th/0003070.
  77. Tarasov A., Venugopalan R., Structure functions at small $x$ from world-lines: unpolarized distributions, Phys. Rev. D 100 (2019), 054007, 27 pages, arXiv:1903.11624.

Previous article  Next article  Contents of Volume 17 (2021)