Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 17 (2021), 037, 31 pages      arXiv:2003.01967

Sobolev Lifting over Invariants

Adam Parusiński a and Armin Rainer b
a) Université Côte d'Azur, CNRS, LJAD, UMR 7351, 06108 Nice, France
b) Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, A-1090 Wien, Austria

Received November 04, 2020, in final form March 29, 2021; Published online April 10, 2021

We prove lifting theorems for complex representations $V$ of finite groups $G$. Let $\sigma=(\sigma_1,\dots,\sigma_n)$ be a minimal system of homogeneous basic invariants and let $d$ be their maximal degree. We prove that any continuous map $\overline{f} \colon {\mathbb R}^m \to V$ such that $f = \sigma \circ \overline{f}$ is of class $C^{d-1,1}$ is locally of Sobolev class $W^{1,p}$ for all $1 \le p$ < $d/(d-1)$. In the case $m=1$ there always exists a continuous choice $\overline{f}$ for given $f\colon {\mathbb R} \to \sigma(V) \subseteq {\mathbb C}^n$. We give uniform bounds for the $W^{1,p}$-norm of $\overline{f}$ in terms of the $C^{d-1,1}$-norm of $f$. The result is optimal: in general a lifting $\overline{f}$ cannot have a higher Sobolev regularity and it even might not have bounded variation if $f$ is in a larger Hölder class.

Key words: Sobolev lifting over invariants; complex representations of finite groups; $Q$-valued Sobolev functions.

pdf (596 kb)   tex (38 kb)  


  1. Almgren Jr. F.J., Almgren's big regularity paper: $Q$-valued functions minimizing Dirichlet's integral and the regularity of area-minimizing rectifiable currents up to codimension 2, World Scientific Monograph Series in Mathematics, Vol. 1, World Sci. Publ. Co., Inc., River Edge, NJ, 2000.
  2. Chevalley C., Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955), 778-782.
  3. Dadok J., Kac V., Polar representations, J. Algebra 92 (1985), 504-524.
  4. De Lellis C., Spadaro E.N., $Q$-valued functions revisited, Mem. Amer. Math. Soc. 211 (2011), vi+79 pages, arXiv:0803.0060.
  5. Derksen H., Kemper G., Computational invariant theory, Encyclopaedia of Mathematical Sciences, Vol. 130, Springer-Verlag, Berlin, 2002.
  6. Ghisi M., Gobbino M., Higher order Glaeser inequalities and optimal regularity of roots of real functions, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 12 (2013), 1001-1021, arXiv:1107.2694.
  7. Grafakos L., Classical Fourier analysis, Graduate Texts in Mathematics, Vol. 249, Springer, New York, 2014.
  8. Kriegl A., Losik M., Michor P.W., Rainer A., Lifting smooth curves over invariants for representations of compact Lie groups. III, J. Lie Theory 16 (2006), 579-600, arXiv:math.RT/0504101.
  9. Losik M., Michor P.W., Rainer A., A generalization of Puiseux's theorem and lifting curves over invariants, Rev. Mat. Complut. 25 (2012), 139-155, arXiv:0904.2068.
  10. Luna D., Slices étales, Mém. Soc. Math. France 33 (1973), 81-105.
  11. Mukai S., An introduction to invariants and moduli, Cambridge Studies in Advanced Mathematics, Vol. 81, Cambridge University Press, Cambridge, 2003.
  12. Neusel M.D., Smith L., Invariant theory of finite groups, Mathematical Surveys and Monographs, Vol. 94, Amer. Math. Soc., Providence, RI, 2002.
  13. Parusiński A., Rainer A., A new proof of Bronshtein's theorem, J. Hyperbolic Differ. Equ. 12 (2015), 671-688, arXiv:1309.2150.
  14. Parusiński A., Rainer A., Lifting differentiable curves from orbit spaces, Transform. Groups 21 (2016), 153-179, arXiv:1406.2485.
  15. Parusiński A., Rainer A., Regularity of roots of polynomials, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 16 (2016), 481-517, arXiv:1309.2151.
  16. Parusiński A., Rainer A., Optimal Sobolev regularity of roots of polynomials, Ann. Sci. Éc. Norm. Supér. (4) 51 (2018), 1343-1387, arXiv:1506.01512.
  17. Parusiński A., Rainer A., Selections of bounded variation for roots of smooth polynomials, Selecta Math. (N.S.) 26 (2020), 13, 40 pages, arXiv:1705.10492.
  18. Schwarz G.W., Lifting smooth homotopies of orbit spaces, Inst. Hautes Études Sci. Publ. Math. 51 (1980), 37-135.
  19. Serre J.-P., Groupes finis d'automorphismes d'anneaux locaux réguliers, in Colloque d'Algèbre (Paris, 1967), Secrétariat mathématique, Paris, 1968, Exp. 8, 11 pages.
  20. Shephard G.C., Todd J.A., Finite unitary reflection groups, Canad. J. Math. 6 (1954), 274-304.
  21. Weyl H., The classical groups. Their invariants and representations, Princeton University Press, Princeton, N.J., 1939.

Previous article  Next article  Contents of Volume 17 (2021)