Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 17 (2021), 006, 23 pages      arXiv:1903.12006
Contribution to the Special Issue on Noncommutative Manifolds and their Symmetries in honour of Giovanni Landi

Poisson Principal Bundles

Shahn Majid and Liam Williams
School of Mathematical Sciences, Queen Mary University of London, Mile End Rd, London E1 4NS, UK

Received June 11, 2020, in final form January 05, 2021; Published online January 13, 2021

We semiclassicalise the theory of quantum group principal bundles to the level of Poisson geometry. The total space $X$ is a Poisson manifold with Poisson-compatible contravariant connection, the fibre is a Poisson-Lie group in the sense of Drinfeld with bicovariant Poisson-compatible contravariant connection, and the base has an inherited Poisson structure and Poisson-compatible contravariant connection. The latter are known to be the semiclassical data for a quantum differential calculus. The theory is illustrated by the Poisson level of the $q$-Hopf fibration on the standard $q$-sphere. We also construct the Poisson level of the spin connection on a principal bundle.

Key words: noncommutative geometry; quantum group; gauge theory; symplectic geometry; poisson geometry; Lie bialgebra; homogenous space; $q$-monopole.

pdf (463 kb)   tex (35 kb)  


  1. Beggs E.J., Majid S., Semiclassical differential structures, Pacific J. Math. 224 (2006), 1-44, arXiv:math.QA/0306273.
  2. Beggs E.J., Majid S., Quantization by cochain twists and nonassociative differentials, J. Math. Phys. 51 (2010), 053522, 32 pages, arXiv:math.QA/0506450.
  3. Beggs E.J., Majid S., Poisson-Riemannian geometry, J. Geom. Phys. 114 (2017), 450-491, arXiv:1403.4231.
  4. Beggs E.J., Majid S., Quantum Riemannian geometry, Grundlehren der mathematischen Wissenschaften, Vol. 355, Springer, Berlin, 2020.
  5. Bonneau P., Flato M., Gerstenhaber M., Pinczon G., The hidden group structure of quantum groups: strong duality, rigidity and preferred deformations, Comm. Math. Phys. 161 (1994), 125-156.
  6. Bordemann M., Neumaier N., Waldmann S., Weiß S., Deformation quantization of surjective submersions and principal fibre bundles, J. Reine Angew. Math. 639 (2010), 1-38, arXiv:0711.2965.
  7. Brzeziński T., Majid S., Quantum group gauge theory on quantum spaces, Comm. Math. Phys. 157 (1993), 591-638, arXiv:hep-th/9208007.
  8. Brzeziński T., Majid S., Quantum geometry of algebra factorisations and coalgebra bundles, Comm. Math. Phys. 213 (2000), 491-521, arXiv:math.QA/9808067.
  9. Bursztyn H., Poisson vector bundles, contravariant connections and deformations, Progr. Theoret. Phys. Suppl. 144 (2001), 26-37.
  10. Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994.
  11. Crainic M., Fernandes R.L., Integrability of Lie brackets, Ann. of Math. 157 (2003), 575-620, arXiv:math.DG/0105033.
  12. Dazord P., Sondaz D., Groupes de Poisson affines, in Symplectic Geometry, Groupoids, and Integrable Systems (Berkeley, CA, 1989), Math. Sci. Res. Inst. Publ., Vol. 20, Springer, New York, 1991, 99-128.
  13. Drinfeld V.G., Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang-Baxter equations, Sov. Math. Dokl. 27 (1983), 68-71.
  14. Drinfeld V.G., Quantum groups, in Proceedings of the International Congress of Mathematicians, Vols. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., Providence, RI, 1987, 798-820.
  15. Drinfeld V.G., On Poisson homogeneous spaces of Poisson-Lie groups, Theoret. and Math. Phys. 95 (1993), 226-227.
  16. Dubois-Violette M., Michor P.W., Connections on central bimodules in noncommutative differential geometry, J. Geom. Phys. 20 (1996), 218-232, arXiv:q-alg/9503020.
  17. Fernandes R.L., Connections in Poisson geometry. I. Holonomy and invariants, J. Differential Geom. 54 (2000), 303-365, arXiv:math.DG/0001129.
  18. Fritz C., Majid S., Noncommutative spherically symmetric spacetimes at semiclassical order, Classical Quantum Gravity 34 (2017), 135013, 50 pages, arXiv:1611.04971.
  19. Hajac P.M., Majid S., Projective module description of the $q$-monopole, Comm. Math. Phys. 206 (1999), 247-264, arXiv:math.QA/9803003.
  20. Hawkins E., Noncommutative rigidity, Comm. Math. Phys. 246 (2004), 211-235, arXiv:math.QA/0211203.
  21. Huebschmann J., Poisson cohomology and quantization, J. Reine Angew. Math. 408 (1990), 57-113.
  22. Klim J., Majid S., Hopf quasigroups and the algebraic 7-sphere, J. Algebra 323 (2010), 3067-3110, arXiv:0906.5026.
  23. Kosmann-Schwarzbach Y., Lie bialgebras, Poisson Lie groups and dressing transformations, in Integrability of Nonlinear Systems (Pondicherry, 1996), Lecture Notes in Phys., Vol. 495, Springer, Berlin, 1997, 104-170.
  24. Lu J.-H., Multiplicative and affine Poisson structures on Lie groups, Ph.D. Thesis, University of California, Berkeley, 1990.
  25. Majid S., Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995.
  26. Majid S., Riemannian geometry of quantum groups and finite groups with nonuniversal differentials, Comm. Math. Phys. 225 (2002), 131-170, arXiv:math.QA/0006150.
  27. Majid S., Noncommutative model with spontaneous time generation and Planckian bound, J. Math. Phys. 46 (2005), 103520, 18 pages, arXiv:hep-th/0507271.
  28. Majid S., Noncommutative Riemannian and spin geometry of the standard $q$-sphere, Comm. Math. Phys. 256 (2005), 255-285, arXiv:math.QA/0307351.
  29. Majid S., Reconstruction and quantization of Riemannian structures, J. Math. Phys. 61 (2020), 022501, 32 pages, arXiv:1307.2778.
  30. Majid S., Tao W.-Q., Noncommutative differentials on Poisson-Lie groups and pre-Lie algebras, Pacific J. Math. 284 (2016), 213-256, arXiv:1412.2284.
  31. Mourad J., Linear connections in non-commutative geometry, Classical Quantum Gravity 12 (1995), 965-974, arXiv:hep-th/9410201.
  32. Podleś P., Quantum spheres, Lett. Math. Phys. 14 (1987), 193-202.
  33. Reshetikhin N.Yu., Takhtadzhyan L.A., Faddeev L.D., Quantization of Lie groups and Lie algebras, Leningrad Math. J. 1 (1990), 193-225.
  34. Stafford J.T., van den Bergh M., Noncommutative curves and noncommutative surfaces, Bull. Amer. Math. Soc. (N.S.) 38 (2001), 171-216, arXiv:math.RA/9910082.
  35. Vaisman I., Lectures on the geometry of Poisson manifolds, Progress in Mathematics, Vol. 118, Birkhäuser Verlag, Basel, 1994.
  36. Woronowicz S.L., Differential calculus on compact matrix pseudogroups (quantum groups), Comm. Math. Phys. 122 (1989), 125-170.

Previous article  Next article  Contents of Volume 17 (2021)