Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 17 (2021), 002, 25 pages      arXiv:2007.05707

A Fully Noncommutative Painlevé II Hierarchy: Lax Pair and Solutions Related to Fredholm Determinants

Sofia Tarricone ab
a) LAREMA, UMR 6093, UNIV Angers, CNRS, SFR Math-Stic, France
b) Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve W., Montréal, Québec, Canada, H3G 1M8

Received July 25, 2020, in final form December 31, 2020; Published online January 05, 2021

We consider Fredholm determinants of matrix Hankel operators associated to matrix versions of the $n$-th Airy functions. Using the theory of integrable operators, we relate them to a fully noncommutative Painlevé II hierarchy, defined through a matrix-valued version of the Lenard operators. In particular, the Riemann-Hilbert techniques used to study these integrable operators allows to find a Lax pair for each member of the hierarchy. Finally, the coefficients of the Lax matrices are explicitly written in terms of the matrix-valued Lenard operators and some solutions of the hierarchy are written in terms of Fredholm determinants of the square of the matrix Airy Hankel operators.

Key words: Painlevé II hierarchy; Airy Hankel operator; Riemann-Hilbert problem; Lax pairs.

pdf (475 kb)   tex (30 kb)  


  1. Baik J., Deift P., Suidan T., Combinatorics and random matrix theory, Graduate Studies in Mathematics, Vol. 172, Amer. Math. Soc., Providence, RI, 2016.
  2. Basor E.L., Widom H., Determinants of Airy operators and applications to random matrices, J. Statist. Phys. 96 (1999), 1-20, arXiv:math.FA/9812043.
  3. Bertola M., The dependence on the monodromy data of the isomonodromic tau function, Comm. Math. Phys. 294 (2010), 539-579, arXiv:0902.4716.
  4. Bertola M., Cafasso M., Fredholm determinants and pole-free solutions to the noncommutative Painlevé II equation, Comm. Math. Phys. 309 (2012), 793-833, arXiv:1101.3997.
  5. Cafasso M., Claeys T., Girotti M., Fredholm determinant solutions of the Painlevé II hierarchy and gap probabilities of determinantal point processes, Int. Math. Res. Not., to appear, arXiv:1902.05595.
  6. Clarkson P.A., Joshi N., Mazzocco M., The Lax pair for the mKdV hierarchy, in Théories asymptotiques et équations de Painlevé, Sémin. Congr., Vol. 14, Soc. Math. France, Paris, 2006, 53-64.
  7. Clarkson P.A., McLeod J.B., A connection formula for the second Painlevé transcendent, Arch. Rational Mech. Anal. 103 (1988), 97-138.
  8. Deift P.A., Zhou X., Asymptotics for the Painlevé II equation, Comm. Pure Appl. Math. 48 (1995), 277-337.
  9. Gordoa P.R., Pickering A., Zhu Z.N., On matrix Painlevé hierarchies, J. Differential Equations 261 (2016), 1128-1175.
  10. Hastings S.P., McLeod J.B., A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation, Arch. Rational Mech. Anal. 73 (1980), 31-51.
  11. Its A.R., Large $N$ asymptotics in random matrices: the Riemann-Hilbert approach, in Random Matrices, Random Processes and Integrable Systems, CRM Ser. Math. Phys., Springer, New York, 2011, 351-413.
  12. Its A.R., Izergin A.G., Korepin V.E., Slavnov N.A., Differential equations for quantum correlation functions, Internat. J. Modern Phys. B 4 (1990), 1003-1037.
  13. Jimbo M., Miwa T., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II, Phys. D 2 (1981), 407-448.
  14. Johansson K., Shape fluctuations and random matrices, Comm. Math. Phys. 209 (2000), 437-476, arXiv:math.CO/9903134.
  15. Johansson K., Random matrices and determinantal processes, in Mathematical Statistical Physics, Elsevier B. V., Amsterdam, 2006, 1-55, arXiv:math-ph/0510038.
  16. Le Doussal P., Majumdar S.N., Schehr G., Multicritical edge statistics for the momenta of fermions in nonharmonic traps, Phys. Rev. Lett. 121 (2018), 030603, 7 pages, arXiv:1802.06436.
  17. Miura R.M., Lange C.G., Particular solutions of forced generalized Airy equations, J. Math. Anal. Appl. 109 (1985), 303-310.
  18. Olver P.J., Sokolov V.V., Integrable evolution equations on associative algebras, Comm. Math. Phys. 193 (1998), 245-268.
  19. Olver P.J., Wang J.P., Classification of integrable one-component systems on associative algebras, Proc. London Math. Soc. 81 (2000), 566-586.
  20. Retakh V., Rubtsov V., Noncommutative Toda chains, Hankel quasideterminants and the Painlevé II equation, J. Phys. A: Math. Theor. 43 (2010), 505204, 13 pages, arXiv:1007.4168.
  21. Soshnikov A., Determinantal random point fields, Russian Math. Surveys 55 (2000), 923-975, arXiv:math.PR/0002099.
  22. Tracy C.A., Widom H., Level-spacing distributions and the Airy kernel, Comm. Math. Phys. 159 (1994), 151-174, arXiv:hep-th/9211141.
  23. Tracy C.A., Widom H., Distribution functions for largest eigenvalues and their applications, in Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002), Higher Ed. Press, Beijing, 2002, 587-596, arXiv:math-ph/0210034.

Previous article  Next article  Contents of Volume 17 (2021)