Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 17 (2021), 001, 26 pages      arXiv:2007.04045
Contribution to the Special Issue on Representation Theory and Integrable Systems in honor of Vitaly Tarasov on the 60th birthday and Alexander Varchenko on the 70th birthday

With Wronskian through the Looking Glass

Vassily Gorbounov ab and Vadim Schechtman c
a) HSE University, Russia
b) Laboratory of Algebraic Geometry and Homological Algebra, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
c) Institut de Mathématiques de Toulouse, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France

Received September 01, 2020, in final form December 27, 2020; Published online January 02, 2021

In the work of Mukhin and Varchenko from 2002 there was introduced a Wronskian map from the variety of full flags in a finite dimensional vector space into a product of projective spaces. We establish a precise relationship between this map and the Plücker map. This allows us to recover the result of Varchenko and Wright saying that the polynomials appearing in the image of the Wronsky map are the initial values of the tau-functions for the Kadomtsev-Petviashvili hierarchy.

Key words: MKP hierarchies; critical points; tau-function; Wronskian.

pdf (681 kb)   tex (346 kb)  


  1. Benkart G., Meinel J., The center of the affine nilTemperley-Lieb algebra, Math. Z. 284 (2016), 413-439, arXiv:1505.02544.
  2. Berenstein A., Fomin S., Zelevinsky A., Parametrizations of canonical bases and totally positive matrices, Adv. Math. 122 (1996), 49-149.
  3. Crum M.M., Associated Sturm-Liouville systems, Quart. J. Math. Oxford Ser. (2) 6 (1955), 121-127.
  4. Eremenko A., Gabrielov A., Degrees of real Wronski maps, Discrete Comput. Geom. 28 (2002), 331-347, arXiv:math.AG/0108133.
  5. Fomin S., Zelevinsky A., Recognizing Schubert cells, J. Algebraic Combin. 12 (2000), 37-57, arXiv:math.CO/9807079.
  6. Goldberg L.R., Catalan numbers and branched coverings by the Riemann sphere, Adv. Math. 85 (1991), 129-144.
  7. Kac V.G., Peterson D.H., Lectures on the infinite wedge-representation and the MKP hierarchy, unpublished.
  8. Macdonald I.G., Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995.
  9. Mukhin E., Varchenko A., Critical points of master functions and flag varieties, Commun. Contemp. Math. 6 (2004), 111-163, arXiv:math.AG/0209017.
  10. Schechtman V., Varchenko A., Positive populations, J. Singul. 20 (2020), 342-370, arXiv:1912.11895.
  11. Segal G., Wilson G., Loop groups and equations of KdV type, Inst. Hautes Études Sci. Publ. Math. 61 (1985), 5-65.
  12. Varchenko A., Wright D., Critical points of master functions and integrable hierarchies, Adv. Math. 263 (2014), 178-229, arXiv:1207.2274.

Next article  Contents of Volume 17 (2021)