Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 16 (2020), 064, 10 pages      arXiv:2005.02604
Contribution to the Special Issue on Scalar and Ricci Curvature in honor of Misha Gromov on his 75th Birthday

The Bochner Technique and Weighted Curvatures

Peter Petersen and Matthias Wink
Department of Mathematics, University of California, 520 Portola Plaza, Los Angeles, CA, 90095, USA

Received May 22, 2020, in final form June 29, 2020; Published online July 09, 2020

In this note we study the Bochner formula on smooth metric measure spaces. We introduce weighted curvature conditions that imply vanishing of all Betti numbers.

Key words: Bochner technique; smooth metric measure spaces; Hodge theory.

pdf (288 kb)   tex (12 kb)  


  1. Bakry D., Émery M., Diffusions hypercontractives, in Séminaire de probabilités, XIX, 1983/84, Lecture Notes in Math., Vol. 1123, Springer, Berlin, 1985, 177-206.
  2. Bakry D., Qian Z., Volume comparison theorems without Jacobi fields, in Current Trends in Potential Theory, Theta Ser. Adv. Math., Vol. 4, Theta, Bucharest, 2005, 115-122.
  3. Lichnerowicz A., Variétés riemanniennes à tenseur C non négatif, C. R. Acad. Sci. Paris Sér. A-B 271 (1970), A650-A653.
  4. Lott J., Some geometric properties of the Bakry-Émery-Ricci tensor, Comment. Math. Helv. 78 (2003), 865-883, arXiv:math.DG/0211065.
  5. Petersen P., Riemannian geometry, 3rd ed., Graduate Texts in Mathematics, Vol. 171, Springer, Cham, 2016.
  6. Petersen P., Wink M., New curvature conditions for the Bochner technique, arXiv:1908.09958v3.
  7. Qian Z., Estimates for weighted volumes and applications, Quart. J. Math. Oxford 48 (1997), 235-242.
  8. Wei G., Wylie W., Comparison geometry for the Bakry-Émery Ricci tensor, J. Differential Geom. 83 (2009), 377-405, arXiv:0706.1120.

Previous article  Next article  Contents of Volume 16 (2020)