Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 16 (2020), 055, 15 pages      arXiv:1902.05904

A Note on Disk Counting in Toric Orbifolds

Kwokwai Chan a, Cheol-Hyun Cho b, Siu-Cheong Lau c, Naichung Conan Leung d and Hsian-Hua Tseng e
a) Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong
b) Department of Mathematical Sciences, Research Institute in Mathematics, Seoul National University, Gwanak-Gu, Seoul, South Korea
c) Department of Mathematics and Statistics, Boston University, Boston, MA, USA
d) The Institute of Mathematical Sciences and Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong
e) Department of Mathematics, Ohio State University, 100 Math Tower, 231 West 18th Ave., Columbus, OH 43210, USA

Received January 24, 2020, in final form June 11, 2020; Published online June 17, 2020

We compute orbi-disk invariants of compact Gorenstein semi-Fano toric orbifolds by extending the method used for toric Calabi-Yau orbifolds. As a consequence the orbi-disc potential is analytic over complex numbers.

Key words: orbifold; toric; open Gromov-Witten invariants; mirror symmetry; SYZ.

pdf (508 kb)   tex (62 kb)  


  1. Auroux D., Mirror symmetry and $T$-duality in the complement of an anticanonical divisor, J. Gökova Geom. Topol. 1 (2007), 51-91, arXiv:0706.3207.
  2. Borisov L.A., Chen L., Smith G.G., The orbifold Chow ring of toric Deligne-Mumford stacks, J. Amer. Math. Soc. 18 (2005), 193-215, arXiv:math.AG/0309229.
  3. Chan K., Cho C.-H., Lau S.-C., Tseng H.-H., Lagrangian Floer superpotentials and crepant resolutions for toric orbifolds, Comm. Math. Phys. 328 (2014), 83-130, arXiv:1208.5282.
  4. Chan K., Cho C.-H., Lau S.-C., Tseng H.-H., Gross fibrations, SYZ mirror symmetry, and open Gromov-Witten invariants for toric Calabi-Yau orbifolds, J. Differential Geom. 103 (2016), 207-288, arXiv:1306.0437.
  5. Chan K., Lau S.-C., Leung N.C., Tseng H.-H., Open Gromov-Witten invariants, mirror maps, and Seidel representations for toric manifolds, Duke Math. J. 166 (2017), 1405-1462, arXiv:1209.6119.
  6. Chen W., Ruan Y., Orbifold Gromov-Witten theory, in Orbifolds in Mathematics and Physics (Madison, WI, 2001), Contemp. Math., Vol. 310, Amer. Math. Soc., Providence, RI, 2002, 25-85, arXiv:math.AG/0103156.
  7. Chen W., Ruan Y., A new cohomology theory of orbifold, Comm. Math. Phys. 248 (2004), 1-31, arXiv:math.AG/0004129.
  8. Cho C.-H., Oh Y.-G., Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds, Asian J. Math. 10 (2006), 773-814, arXiv:math.SG/0308225.
  9. Cho C.-H., Poddar M., Holomorphic orbi-discs and Lagrangian Floer cohomology of symplectic toric orbifolds, J. Differential Geom. 98 (2014), 21-116, arXiv:1206.3994.
  10. Cho C.-H., Shin H.-S., Chern-Weil Maslov index and its orbifold analogue, Asian J. Math. 20 (2016), 1-19, arXiv:1202.0556.
  11. Coates T., Corti A., Iritani H., Tseng H.-H., A mirror theorem for toric stacks, Compos. Math. 151 (2015), 1878-1912, arXiv:1310.4163.
  12. Cox D.A., Little J.B., Schenck H.K., Toric varieties, Graduate Studies in Mathematics, Vol. 124, Amer. Math. Soc., Providence, RI, 2011.
  13. Fukaya K., Oh Y.-G., Ohta H., Ono K., Lagrangian intersection Floer theory: anomaly and obstruction, AMS/IP Studies in Advanced Mathematics, Vol. 46, Amer. Math. Soc., Providence, RI, 2009.
  14. Fukaya K., Oh Y.-G., Ohta H., Ono K., Lagrangian Floer theory on compact toric manifolds. I, Duke Math. J. 151 (2010), 23-174, arXiv:0802.1703.
  15. Fukaya K., Oh Y.-G., Ohta H., Ono K., Lagrangian Floer theory on compact toric manifolds II: bulk deformations, Selecta Math. (N.S.) 17 (2011), 609-711, arXiv:0810.5654.
  16. Fukaya K., Oh Y.-G., Ohta H., Ono K., Technical details on Kuranishi structure and virtual fundamental chain, arXiv:1209.4410.
  17. Fukaya K., Oh Y.-G., Ohta H., Ono K., Lagrangian Floer theory and mirror symmetry on compact toric manifolds, Astérisque 376 (2016), vi+340 pages, arXiv:1009.1648.
  18. González E., Iritani H., Seidel elements and mirror transformations, Selecta Math. (N.S.) 18 (2012), 557-590, arXiv:1103.4171.
  19. Gross M., Siebert B., From real affine geometry to complex geometry, Ann. of Math. 174 (2011), 1301-1428, arXiv:math.AG/0703822.
  20. Hausel T., Sturmfels B., Toric hyperKähler varieties, Doc. Math. 7 (2002), 495-534, arXiv:math.AG/0203096.
  21. Iritani H., An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, Adv. Math. 222 (2009), 1016-1079, arXiv:0903.1463.
  22. Jiang Y., The orbifold cohomology ring of simplicial toric stack bundles, Illinois J. Math. 52 (2008), 493-514, arXiv:math.AG/0504563.
  23. McDuff D., Wehrheim K., Smooth Kuranishi atlases with isotropy, Geom. Topol. 21 (2017), 2725-2809, arXiv:1508.01556.
  24. Ruddat H., Siebert B., Period integrals from wall structures via tropical cycles, canonical coordinates in mirror symmetry and analyticity of toric degenerations, Publ. Math. Inst. Hautes Études Sci., to appear, arXiv:1907.03794.
  25. Strominger A., Yau S.-T., Zaslow E., Mirror symmetry is $T$-duality, Nuclear Phys. B 479 (1996), 243-259, arXiv:hep-th/9606040.

Previous article  Next article  Contents of Volume 16 (2020)