Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 16 (2020), 032, 111 pages      arXiv:1906.00801
Contribution to the Special Issue on Integrability, Geometry, Moduli in honor of Motohico Mulase for his 65th birthday

Global Mirrors and Discrepant Transformations for Toric Deligne-Mumford Stacks

Hiroshi Iritani
Department of Mathematics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan

Received June 13, 2019, in final form March 29, 2020; Published online April 22, 2020

We introduce a global Landau-Ginzburg model which is mirror to several toric Deligne-Mumford stacks and describe the change of the Gromov-Witten theories under discrepant transformations. We prove a formal decomposition of the quantum cohomology D-modules (and of the all-genus Gromov-Witten potentials) under a discrepant toric wall-crossing. In the case of weighted blowups of weak-Fano compact toric stacks along toric centres, we show that an analytic lift of the formal decomposition corresponds, via the $\widehat{\Gamma}$-integral structure, to an Orlov-type semiorthogonal decomposition of topological $K$-groups. We state a conjectural functoriality of Gromov-Witten theories under discrepant transformations in terms of a Riemann-Hilbert problem.

Key words: quantum cohomology; mirror symmetry; toric variety; Landau-Ginzburg model; Gamma-integral structure.

pdf (1724 kb)   tex (339 kb)  


  1. Abramovich D., Graber T., Vistoli A., Algebraic orbifold quantum products, in Orbifolds in Mathematics and Physics (Madison, WI, 2001), Contemp. Math., Vol. 310, Amer. Math. Soc., Providence, RI, 2002, 1-24, arXiv:math.AG/0112004.
  2. Abramovich D., Graber T., Vistoli A., Gromov-Witten theory of Deligne-Mumford stacks, Amer. J. Math. 130 (2008), 1337-1398, arXiv:math.AG/0603151.
  3. Acosta P., Asymptotic expansion and the LG/(Fano, general type) correspondence, arXiv:1411.4162.
  4. Acosta P., Shoemaker M., Quantum cohomology of toric blowups and Landau-Ginzburg correspondences, Algebr. Geom. 5 (2018), 239-263, arXiv:1504.04396.
  5. Acosta P., Shoemaker M., Gromov-Witten theory of toric birational transformations, Int. Math. Res. Not., to appear, arXiv:1604.03491.
  6. Adolphson A., Hypergeometric functions and rings generated by monomials, Duke Math. J. 73 (1994), 269-290.
  7. Arnol'd V.I., Guseǐn-Zade S.M., Varchenko A.N., Singularities of differentiable maps, Vol. II, Monodromy and asymptotics of integrals, Monographs in Mathematics, Vol. 83, Birkhäuser Boston, Inc., Boston, MA, 1988.
  8. Ballard M., Diemer C., Favero D., Katzarkov L., Kerr G., The Mori program and non-Fano toric homological mirror symmetry, Trans. Amer. Math. Soc. 367 (2015), 8933-8974, arXiv:1302.0803.
  9. Ballard M., Favero D., Katzarkov L., Variation of geometric invariant theory quotients and derived categories, J. Reine Angew. Math. 746 (2019), 235-303, arXiv:1203.6643.
  10. Balser W., Jurkat W.B., Lutz D.A., Birkhoff invariants and Stokes' multipliers for meromorphic linear differential equations, J. Math. Anal. Appl. 71 (1979), 48-94.
  11. Barannikov S., Semi-infinite Hodge structure and mirror symmetry for projective spaces, arXiv:math.AG/0010157.
  12. Bayer A., Semisimple quantum cohomology and blowups, Int. Math. Res. Not. 2004 (2004), 2069-2083, arXiv:math.AG/0403260.
  13. Bondal A., Orlov D., Semiorthogonal decomposition for algebraic varieties, arXiv:alg-geom/9506012.
  14. Borisov L.A., Chen L., Smith G.G., The orbifold Chow ring of toric Deligne-Mumford stacks, J. Amer. Math. Soc. 18 (2005), 193-215, arXiv:math.AG/0309229.
  15. Borisov L.A., Horja R.P., Mellin-Barnes integrals as Fourier-Mukai transforms, Adv. Math. 207 (2006), 876-927, arXiv:math.AG/0510486.
  16. Borisov L.A., Horja R.P., On the $K$-theory of smooth toric DM stacks, in Snowbird Lectures on String Geometry, Contemp. Math., Vol. 401, Amer. Math. Soc., Providence, RI, 2006, 21-42, arXiv:math.AG/0503277.
  17. Borisov L.A., Horja R.P., On the better behaved version of the GKZ hypergeometric system, Math. Ann. 357 (2013), 585-603, arXiv:1011.5720.
  18. Bridgeland T., Toledano Laredo V., Stokes factors and multilogarithms, J. Reine Angew. Math. 682 (2013), 89-128, arXiv:1006.4623.
  19. Brini A., Cavalieri R., Ross D., Crepant resolutions and open strings, J. Reine Angew. Math. 755 (2019), 191-245, arXiv:1309.4438.
  20. Bryan J., Graber T., The crepant resolution conjecture, in Algebraic Geometry - Seattle 2005, Part 1, Proc. Sympos. Pure Math., Vol. 80, Amer. Math. Soc., Providence, RI, 2009, 23-42, arXiv:math.AG/0610129.
  21. Cadman C., Using stacks to impose tangency conditions on curves, Amer. J. Math. 129 (2007), 405-427, arXiv:math.AG/0312349.
  22. Charest F., Woodward C.T., Floer cohomology and flips, arXiv:1508.01573.
  23. Chen W., Ruan Y., Orbifold Gromov-Witten theory, in Orbifolds in Mathematics and Physics (Madison, WI, 2001), Contemp. Math., Vol. 310, Amer. Math. Soc., Providence, RI, 2002, 25-85, arXiv:math.AG/0103156.
  24. Chen W., Ruan Y., A new cohomology theory of orbifold, Comm. Math. Phys. 248 (2004), 1-31, arXiv:math.AG/0004129.
  25. Clingempeel J., Le Floch B., Romo M., Brane transport in anomalous (2,2) models and localization, arXiv:1811.12385.
  26. Coates T., Corti A., Iritani H., Tseng H.-H., A mirror theorem for toric stacks, Compos. Math. 151 (2015), 1878-1912, arXiv:1310.4163.
  27. Coates T., Corti A., Iritani H., Tseng H.-H., Hodge-theoretic mirror symmetry for toric stacks, J. Differential Geom. 114 (2020), 41-115, arXiv:1606.07254.
  28. Coates T., Givental A., Quantum Riemann-Roch, Lefschetz and Serre, Ann. of Math. 165 (2007), 15-53, arXiv:math.AG/0110142.
  29. Coates T., Iritani H., On the convergence of Gromov-Witten potentials and Givental's formula, Michigan Math. J. 64 (2015), 587-631, arXiv:1203.4193.
  30. Coates T., Iritani H., A Fock sheaf for Givental quantization, Kyoto J. Math. 58 (2018), 695-864, arXiv:1411.7039.
  31. Coates T., Iritani H., Jiang Y., The crepant transformation conjecture for toric complete intersections, Adv. Math. 329 (2018), 1002-1087, arXiv:1410.0024.
  32. Coates T., Iritani H., Tseng H.-H., Wall-crossings in toric Gromov-Witten theory. I. Crepant examples, Geom. Topol. 13 (2009), 2675-2744, arXiv:math.AG/0611550.
  33. Cotti G., Dubrovin B., Guzzetti D., Isomonodromy deformations at an irregular singularity with coalescing eigenvalues, Duke Math. J. 168 (2019), 967-1108, arXiv:1706.04808.
  34. Cox D.A., Little J.B., Schenck H.K., Toric varieties, Graduate Studies in Mathematics, Vol. 124, Amer. Math. Soc., Providence, RI, 2011.
  35. Diemer C., Katzarkov L., Kerr G., Compactifications of spaces of Landau-Ginzburg models, Izv. Math. 77 (2013), 487-508, arXiv:1207.0042.
  36. Diemer C., Katzarkov L., Kerr G., Symplectomorphism group relations and degenerations of Landau-Ginzburg models, J. Eur. Math. Soc. 18 (2016), 2167-2271, arXiv:1204.2233.
  37. Douai A., Sabbah C., Gauss-Manin systems, Brieskorn lattices and Frobenius structures. I, Ann. Inst. Fourier (Grenoble) 53 (2003), 1055-1116, arXiv:math.AG/0211352.
  38. Douai A., Sabbah C., Gauss-Manin systems, Brieskorn lattices and Frobenius structures. II, in Frobenius Manifolds, Aspects Math., Vol. E36, Friedr. Vieweg, Wiesbaden, 2004, 1-18, arXiv:math.AG/0211353.
  39. Dubrovin B., Geometry and analytic theory of Frobenius manifolds, Doc. Math. (1998), extra Vol. II, 315-326, arXiv:math.AG/9807034.
  40. Dubrovin B., Painlevé transcendents in two-dimensional topological field theory, in The Painlevé Property, CRM Ser. Math. Phys., Springer, New York, 1999, 287-412, arXiv:math.AG/9803107.
  41. Fang B., Zhou P., Gamma II for toric varieties from integrals on T-dual branes and homological mirror symmetry, arXiv:1903.05300.
  42. Fantechi B., Mann E., Nironi F., Smooth toric Deligne-Mumford stacks, J. Reine Angew. Math. 648 (2010), 201-244, arXiv:0708.1254.
  43. Galkin S., The conifold point, arXiv:1404.7388.
  44. Galkin S., Golyshev V., Iritani H., Gamma classes and quantum cohomology of Fano manifolds: gamma conjectures, Duke Math. J. 165 (2016), 2005-2077, arXiv:1404.6407.
  45. Gel'fand I.M., Kapranov M.M., Zelevinsky A.V., Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1994.
  46. Gel'fand I.M., Zelevinskii A.V., Kapranov M.M., Hypergeometric functions and toric varieties, Funct. Anal. Appl. 23 (1989), 94-106.
  47. Givental A.B., Homological geometry and mirror symmetry, in Proceedings of the International Congress of Mathematicians, Vols. 1, 2 (Zürich, 1994), Birkhäuser, Basel, 1995, 472-480.
  48. Givental A.B., Elliptic Gromov-Witten invariants and the generalized mirror conjecture, in Integrable Systems and Algebraic Geometry (Kobe/Kyoto, 1997), World Sci. Publ., River Edge, NJ, 1998, 107-155, arXiv:math.AG/9803053.
  49. Givental A.B., Gromov-Witten invariants and quantization of quadratic Hamiltonians, Mosc. Math. J. 1 (2001), 551-568, arXiv:math.AG/0108100.
  50. Givental A.B., Semisimple Frobenius structures at higher genus, Int. Math. Res. Not. 2001 (2001), 1265-1286, arXiv:math.AG/0008067.
  51. González E., Woodward C.T., Quantum cohomology and toric minimal model programs, Adv. Math. 353 (2019), 591-646, arXiv:1207.3253.
  52. Gorchinskiy S., Orlov D., Geometric phantom categories, Publ. Math. Inst. Hautes Études Sci. 117 (2013), 329-349, arXiv:1209.6183.
  53. Graber T., Pandharipande R., Localization of virtual classes, Invent. Math. 135 (1999), 487-518, arXiv:alg-geom/9708001.
  54. Gross M., Tropical geometry and mirror symmetry, CBMS Regional Conference Series in Mathematics, Vol. 114, Amer. Math. Soc., Providence, RI, 2011.
  55. Halpern-Leistner D., The derived category of a GIT quotient, J. Amer. Math. Soc. 28 (2015), 871-912, arXiv:1203.0276.
  56. Herbst M., Hori K., Page D., Phases of $\mathcal{N}=2$ theories in $1+1$ dimensions with boundary, arXiv:0803.2045.
  57. Hertling C., Sevenheck C., Nilpotent orbits of a generalization of Hodge structures, J. Reine Angew. Math. 609 (2007), 23-80, arXiv:math.AG/0603564.
  58. Hori K., Vafa C., Mirror symmetry, arXiv:hep-th/0002222.
  59. Iritani H., Convergence of quantum cohomology by quantum Lefschetz, J. Reine Angew. Math. 610 (2007), 29-69, arXiv:math.DG/0506236.
  60. Iritani H., Fourier-Mukai transformation and toric quantum cohomology, Talk at Korean Institute for Advanced Study on June 10, 2008, as part of the Workshop on Gromov-Witten Theory and Related Topics, June 09-13, 2008,
  61. Iritani H., Quantum $D$-modules and generalized mirror transformations, Topology 47 (2008), 225-276, arXiv:math.DG/0411111.
  62. Iritani H., An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, Adv. Math. 222 (2009), 1016-1079, arXiv:0903.1463.
  63. Iritani H., Wall-crossings in toric Gromov-Witten theory III, Talk at Massachusetts Institute of Technology on June 25, 2009, as part of the Workshop on Mirror Symmetry and Related Topics, June 22-26, 2009, Notes and slides available at
  64. Iritani H., Quantum cohomology and periods, Ann. Inst. Fourier (Grenoble) 61 (2011), 2909-2958, arXiv:1101.4512.
  65. Iritani H., A mirror construction for the big equivariant quantum cohomology of toric manifolds, Math. Ann. 368 (2017), 279-316, arXiv:1503.02919.
  66. Iwanari I., The category of toric stacks, Compos. Math. 145 (2009), 718-746, arXiv:math.AG/0610548.
  67. Iwanari I., Logarithmic geometry, minimal free resolutions and toric algebraic stacks, Publ. Res. Inst. Math. Sci. 45 (2009), 1095-1140, arXiv:0707.2568.
  68. Jiang Y., The orbifold cohomology ring of simplicial toric stack bundles, Illinois J. Math. 52 (2008), 493-514, arXiv:math.AG/0504563.
  69. Jinzenji M., Coordinate change of Gauss-Manin system and generalized mirror transformation, Internat. J. Modern Phys. A 20 (2005), 2131-2156, arXiv:math.AG/0310212.
  70. Katzarkov L., Kontsevich M., Pantev T., Hodge theoretic aspects of mirror symmetry, in From Hodge theory to integrability and TQFT $tt^*$-geometry, Proc. Sympos. Pure Math., Vol. 78, Amer. Math. Soc., Providence, RI, 2008, 87-174, arXiv:0806.0107.
  71. Kawamata Y., Log crepant birational maps and derived categories, J. Math. Sci. Univ. Tokyo 12 (2005), 211-231, arXiv:math.AG/0311139.
  72. Kawamata Y., Derived categories and birational geometry, in Algebraic Geometry - Seattle 2005, Part 2, Proc. Sympos. Pure Math., Vol. 80, Amer. Math. Soc., Providence, RI, 2009, 655-665, arXiv:0804.3150.
  73. Kerr G., Weighted blowups and mirror symmetry for toric surfaces, Adv. Math. 219 (2008), 199-250, arXiv:math.AG/0609162.
  74. Kontsevich M., Birational invariants from quantum cohomology, Talk at Higher School of Economics on May 27, 2019, as part of Homological Mirror Symmetry at HSE, May 27 - June 1, 2019,
  75. Kouchnirenko A.G., Polyèdres de Newton et nombres de Milnor, Invent. Math. 32 (1976), 1-31.
  76. Kuznetsov A., Hochschild homology and semiorthogonal decompositions, arXiv:0904.4330.
  77. Lee Y.-P., Lin H.-W., Wang C.-L., Flops, motives, and invariance of quantum rings, Ann. of Math. 172 (2010), 243-290, arXiv:math.AG/0608370.
  78. Lee Y.-P., Lin H.-W., Wang C.-L., Quantum cohomology under birational maps and transitions, in String-Math 2015, Proc. Sympos. Pure Math., Vol. 96, Amer. Math. Soc., Providence, RI, 2017, 149-168, arXiv:1705.04799.
  79. Lee Y.-P., Lin H.-W., Wang C.-L., Quantum flips I: local model, arXiv:1912.03012.
  80. Li A.-M., Ruan Y., Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds, Invent. Math. 145 (2001), 151-218, arXiv:math.AG/9803036.
  81. Mann E., Reichelt T., Logarithmic degenerations of Landau-Ginzburg models for toric orbifolds and global $tt^*$ geometry, arXiv:1605.08937.
  82. Matsumura H., Commutative ring theory, 2nd ed., Cambridge Studies in Advanced Mathematics, Vol. 8, Cambridge University Press, Cambridge, 1989.
  83. Matusevich L.F., Miller E., Walther U., Homological methods for hypergeometric families, J. Amer. Math. Soc. 18 (2005), 919-941, arXiv:math.AG/0406383.
  84. Milnor J., Singular points of complex hypersurfaces, Annals of Mathematics Studies, Vol. 61, Princeton University Press, Princeton, N.J., University of Tokyo Press, Tokyo, 1968.
  85. Némethi A., Zaharia A., Milnor fibration at infinity, Indag. Math. (N.S.) 3 (1992), 323-335.
  86. Oda T., Park H.S., Linear Gale transforms and Gel'fand-Kapranov-Zelevinskij decompositions, Tohoku Math. J. 43 (1991), 375-399.
  87. Orlov D.O., Projective bundles, monoidal transformations, and derived categories of coherent sheaves, Izv. Math. 41 (1993), 133-141.
  88. Pandharipande R., Pixton A., Zvonkine D., Relations on $\overline{\mathcal M}_{g,n}$ via $3$-spin structures, J. Amer. Math. Soc. 28 (2015), 279-309, arXiv:1303.1043.
  89. Parusiński A., On the bifurcation set of complex polynomial with isolated singularities at infinity, Compositio Math. 97 (1995), 369-384.
  90. Pham F., La descente des cols par les onglets de Lefschetz, avec vues sur Gauss-Manin, Astérisque 130 (1985), 11-47.
  91. Reichelt T., Sevenheck C., Logarithmic Frobenius manifolds, hypergeometric systems and quantum $\mathcal D$-modules, J. Algebraic Geom. 24 (2015), 201-281, arXiv:1010.2118.
  92. Ruan Y., The cohomology ring of crepant resolutions of orbifolds, in Gromov-Witten theory of spin curves and orbifolds, Contemp. Math., Vol. 403, Amer. Math. Soc., Providence, RI, 2006, 117-126, arXiv:math.AG/0108195.
  93. Sabbah C., Hypergeometric period for a tame polynomial, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), 603-608, A longer version published in Port. Math. (N.S.) 63 (2006), 173-226, arXiv:math.AG/9805077.
  94. Sabbah C., Polarizable twistor $\mathcal D$-modules, Astérisque 300 (2005), vi+208 pages, arXiv:math.AG/0503038.
  95. Sabbah C., Isomonodromic deformations and Frobenius manifolds. An introduction, Universitext, Springer-Verlag London, Ltd., London, 2007.
  96. Saito K., The higher residue pairings $K_{F}^{(k)}$ for a family of hypersurface singular points, in Singularities, Part 2 (Arcata, Calif., 1981), Proc. Sympos. Pure Math., Vol. 40, Amer. Math. Soc., Providence, RI, 1983, 441-463.
  97. Saito K., Period mapping associated to a primitive form, Publ. Res. Inst. Math. Sci. 19 (1983), 1231-1264.
  98. Saito M., On the structure of Brieskorn lattice, Ann. Inst. Fourier (Grenoble) 39 (1989), 27-72.
  99. Sanda F., Fukaya categories and blow-ups, Ph.D. Thesis, Nagoya University, 2015, available at
  100. Sanda F., Computation of quantum cohomology from Fukaya categories, arXiv:1712.03924.
  101. Sanda F., Shamoto Y., An analogue of Dubrovin's conjecture, Ann. Inst. Fourier (Grenoble), to appear, arXiv:1705.05989.
  102. Shadrin S., BCOV theory via Givental group action on cohomological fields theories, Mosc. Math. J. 9 (2009), 411-429, arXiv:0810.0725.
  103. The Stacks Project Authors, Stacks Project, 2020,
  104. Teleman C., The structure of 2D semi-simple field theories, Invent. Math. 188 (2012), 525-588, arXiv:0712.0160.
  105. Tseng H.-H., Orbifold quantum Riemann-Roch, Lefschetz and Serre, Geom. Topol. 14 (2010), 1-81, arXiv:math.AG/0506111.
  106. Tyomkin I., Tropical geometry and correspondence theorems via toric stacks, Math. Ann. 353 (2012), 945-995, arXiv:1001.1554.
  107. Wasow W., Asymptotic expansions for ordinary differential equations, Pure and Applied Mathematics, Vol. 14, Interscience Publishers John Wiley & Sons, Inc., New York - London - Sydney, 1965.
  108. Zariski O., Samuel P., Commutative algebra, Vol. II, Graduate Texts in Mathematics, Vol. 29, Springer-Verlag, New York - Heidelberg, 1975.
  109. Zong Z., Equivariant Gromov-Witten theory of GKM orbifolds, arXiv:1604.07270.

Previous article  Next article  Contents of Volume 16 (2020)