Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 16 (2020), 028, 42 pages      arXiv:1812.05863
Contribution to the Special Issue on Cluster Algebras

Exponents Associated with $Y$-Systems and their Relationship with $q$-Series

Yuma Mizuno
Department of Mathematical and Computing Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan

Received September 27, 2019, in final form April 02, 2020; Published online April 18, 2020

Let $X_r$ be a finite type Dynkin diagram, and $\ell$ be a positive integer greater than or equal to two. The $Y$-system of type $X_r$ with level $\ell$ is a system of algebraic relations, whose solutions have been proved to have periodicity. For any pair $(X_r, \ell)$, we define an integer sequence called exponents using formulation of the $Y$-system by cluster algebras. We give a conjectural formula expressing the exponents by the root system of type $X_r$, and prove this conjecture for $(A_1,\ell)$ and $(A_r, 2)$ cases. We point out that a specialization of this conjecture gives a relationship between the exponents and the asymptotic dimension of an integrable highest weight module of an affine Lie algebra. We also give a point of view from $q$-series identities for this relationship.

Key words: cluster algebras; $Y$-systems; root systems; $q$-series.

pdf (1053 kb)   tex (322 kb)  


  1. Bartlett N., Warnaar S.O., Hall-Littlewood polynomials and characters of affine Lie algebras, Adv. Math. 285 (2015), 1066-1105, arXiv:1304.1602.
  2. Calegari F., Garoufalidis S., Zagier D., Bloch groups, algebraic $K$-theory, units, and Nahm's conjecture, arXiv:1712.04887.
  3. Flohr M., Grabow C., Koehn M., Fermionic expressions for the characters of $c_{p,1}$ logarithmic conformal field theories, Nuclear Phys. B 768 (2007), 263-276, arXiv:hep-th/0611241.
  4. Fomin S., Zelevinsky A., Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), 497-529, arXiv:math.RT/0104151.
  5. Fomin S., Zelevinsky A., $Y$-systems and generalized associahedra, Ann. of Math. 158 (2003), 977-1018, arXiv:hep-th/0111053.
  6. Fomin S., Zelevinsky A., Cluster algebras. IV. Coefficients, Compos. Math. 143 (2007), 112-164, arXiv:math.RA/0602259.
  7. Galashin P., Pylyavskyy P., The classification of Zamolodchikov periodic quivers, Amer. J. Math. 141 (2019), 447-484, arXiv:1603.03942.
  8. Garoufalidis S., Lê T.T.Q., Nahm sums, stability and the colored Jones polynomial, Res. Math. Sci. 2 (2015), Art. 1, 55 pages, arXiv:1112.3905.
  9. Georgiev G., Combinatorial constructions of modules for infinite-dimensional Lie algebras, II. Parafermionic space, arXiv:q-alg/9504024.
  10. Gleitz A.-S., On the KNS conjecture in type $E$, Ann. Comb. 18 (2014), 617-643, arXiv:1307.2738.
  11. Hatayama G., Kuniba A., Okado M., Takagi T., Tsuboi Z., Paths, Crystals and Fermionic Formulae, in MathPhys odyssey, 2001, Prog. Math. Phys., Vol. 23, Birkhäuser Boston, Boston, MA, 2002, 205-272, arXiv:math.QA/0102113.
  12. Inoue R., Iyama O., Keller B., Kuniba A., Nakanishi T., Periodicities of T-systems and Y-systems, dilogarithm identities, and cluster algebras I: type $B_r$, Publ. Res. Inst. Math. Sci. 49 (2013), 1-42, arXiv:1001.1880.
  13. Inoue R., Iyama O., Keller B., Kuniba A., Nakanishi T., Periodicities of T-systems and Y-systems, dilogarithm identities, and cluster algebras II: types $C_r$, $F_4$, and $G_2$, Publ. Res. Inst. Math. Sci. 49 (2013), 43-85, arXiv:1001.1881.
  14. Kac V.G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990.
  15. Kac V.G., Peterson D.H., Infinite-dimensional Lie algebras, theta functions and modular forms, Adv. Math. 53 (1984), 125-264.
  16. Kac V.G., Wakimoto M., Modular and conformal invariance constraints in representation theory of affine algebras, Adv. Math. 70 (1988), 156-236.
  17. Kato A., Terashima Y., Quiver mutation loops and partition $q$-series, Comm. Math. Phys. 336 (2015), 811-830, arXiv:1403.6569.
  18. Keller B., The periodicity conjecture for pairs of Dynkin diagrams, Ann. of Math. 177 (2013), 111-170, arXiv:1001.1531.
  19. Kirillov A.N., Identities for the Rogers dilogarithmic function connected with simple Lie algebras, J. Soviet Math. 47 (1989), 2450-2459.
  20. Kuniba A., Thermodynamics of the $U_q\big(X^{(1)}_r\big)$ Bethe ansatz system with $q$ a root of unity, Nuclear Phys. B 389 (1993), 209-244.
  21. Kuniba A., Nakanishi T., Spectra in conformal field theories from the Rogers dilogarithm, Modern Phys. Lett. A 7 (1992), 3487-3494, arXiv:hep-th/9206034.
  22. Kuniba A., Nakanishi T., Suzuki J., Characters in conformal field theories from thermodynamic Bethe ansatz, Modern Phys. Lett. A 8 (1993), 1649-1659, arXiv:hep-th/9301018.
  23. Kuniba A., Nakanishi T., Suzuki J., $T$-systems and $Y$-systems in integrable systems, J. Phys. A: Math. Theor. 44 (2011), 103001, 146 pages, arXiv:1010.1344.
  24. Lee C.-H., Nahm's conjecture and $Y$-systems, Commun. Number Theory Phys. 7 (2013), 1-14, arXiv:1109.3667.
  25. Lee C.-H., A proof of the KNS conjecture: $D_r$ case, J. Phys. A: Math. Theor. 46 (2013), 165201, 12 pages, arXiv:1210.1669.
  26. Lee C.-H., Positivity and periodicity of $Q$-systems in the WZW fusion ring, Adv. Math. 311 (2017), 532-568, arXiv:1302.1467.
  27. Mizuno Y., Jacobian matrices of Y-seed mutations, Adv. in Appl. Math. 115 (2020), 101987, 36 pages, arXiv:1805.00044.
  28. Nahm W., Recknagel A., Terhoeven M., Dilogarithm identities in conformal field theory, Modern Phys. Lett. A 8 (1993), 1835-1847, arXiv:hep-th/9211034.
  29. Nakanishi T., Dilogarithm identities for conformal field theories and cluster algebras: simply laced case, Nagoya Math. J. 202 (2011), 23-43, arXiv:0909.5480.
  30. Nakanishi T., Periodicities in cluster algebras and dilogarithm identities, in Representations of Algebras and Related Topics, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2011, 407-443, arXiv:1006.0632.
  31. Stembridge J.R., Admissible $W$-graphs and commuting Cartan matrices, Adv. in Appl. Math. 44 (2010), 203-224.
  32. Stoyanovsky A.V., Lie algebra deformations and character formulas, Funct. Anal. Appl. 32 (1998), 66-68.
  33. Stoyanovsky A.V., Feigin B.L., Functional models for representations of current algebras and semi-infinite Schubert cells, Funct. Anal. Appl. 28 (1994), 55-72.
  34. Terashima Y., Yamazaki M., $\mathcal{N}=2$ theories from cluster algebras, Progr. Theor. Exper. Phys. 2014 (2012), 023B01, 37 pages, arXiv:1301.5902.
  35. Terhoeven M., Dilogarithm identities, fusion rules and structure constants of CFTs, Modern Phys. Lett. A 9 (1994), 133-141, arXiv:hep-th/9307056.
  36. Vlasenko M., Zwegers S., Nahm's conjecture: asymptotic computations and counterexamples, Commun. Number Theory Phys. 5 (2011), 617-642, arXiv:1104.4008.
  37. Warnaar S.O., Proof of the Flohr-Grabow-Koehn conjectures for characters of logarithmic conformal field theory, J. Phys. A: Math. Theor. 40 (2007), 12243-12254, arXiv:0704.3118.
  38. Warnaar S.O., Zudilin W., Dedekind's $\eta$-function and Rogers-Ramanujan identities, Bull. Lond. Math. Soc. 44 (2012), 1-11, arXiv:1001.1571.
  39. Zagier D., The dilogarithm function, in Frontiers in Number Theory, Physics, and Geometry. II, Springer, Berlin, 2007, 3-65.

Previous article  Next article  Contents of Volume 16 (2020)