Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 16 (2020), 019, 32 pages      arXiv:1911.02503
Contribution to the Special Issue on Algebra, Topology, and Dynamics in Interaction in honor of Dmitry Fuchs

A Faithful Braid Group Action on the Stable Category of Tricomplexes

Mikhail Khovanov a and You Qi b
a)  Department of Mathematics, Columbia University, New York, NY 10027, USA
b)  Department of Mathematics, University of Virginia, Charlottesville, VA 22904, USA

Received November 07, 2019, in final form March 19, 2020; Published online March 29, 2020

Bicomplexes of vector spaces frequently appear throughout algebra and geometry. In Section 2 we explain how to think about the arrows in the spectral sequence of a bicomplex via its indecomposable summands. Polycomplexes seem to be much more rare. In Section 3 of this paper we rethink a well-known faithful categorical braid group action via an action on the stable category of tricomplexes.

Key words: braid group; categorical action; bicomplexes; spectral sequence; tricomplexes; stable category.

pdf (637 kb)   tex (200 kb)  


  1. Cartan H., Eilenberg S., Homological algebra, Princeton University Press, Princeton, N.J., 1956.
  2. Cathelineau J.-L., Projective configurations, homology of orthogonal groups, and Milnor $K$-theory, Duke Math. J. 121 (2004), 343-387.
  3. Chow T.Y., You could have invented spectral sequences, Notices Amer. Math. Soc. 53 (2006), 15-19.
  4. Deligne P., Griffiths P., Morgan J., Sullivan D., Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), 245-274.
  5. Eisenbud D., Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics, Vol. 150, Springer-Verlag, New York, 1995.
  6. Fomenko A., Fuchs D., Homotopical topology, 2nd ed., Graduate Texts in Mathematics, Vol. 273, Springer, Cham, 2016.
  7. Gelfand S.I., Manin Yu.I., Methods of homological algebra, 2nd ed., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003.
  8. Griffiths P., Harris J., Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience, New York, 1978.
  9. Happel D., Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series, Vol. 119, Cambridge University Press, Cambridge, 1988.
  10. Huerfano R.S., Khovanov M., Categorification of some level two representations of quantum $\mathfrak{sl}_n$, J. Knot Theory Ramifications 15 (2006), 695-713, arXiv:math.QA/0204333.
  11. Keller B., Deriving DG categories, Ann. Sci. École Norm. Sup. (4) 27 (1994), 63-102.
  12. Khovanov M., A functor-valued invariant of tangles, Algebr. Geom. Topol. 2 (2002), 665-741, arXiv:math.QA/0103190.
  13. Khovanov M., Quiver representations and spectral sequences, Lecture notes at Columbia University, 2010, available at
  14. Khovanov M., Hopfological algebra and categorification at a root of unity: the first steps, J. Knot Theory Ramifications 25 (2016), 1640006, 26 pages, arXiv:math.QA/0509083.
  15. Khovanov M., Qi Y., An approach to categorification of some small quantum groups, Quantum Topol. 6 (2015), 185-311, arXiv:1208.0616.
  16. Khovanov M., Seidel P., Quivers, Floer cohomology, and braid group actions, J. Amer. Math. Soc. 15 (2002), 203-271, arXiv:math.QA/0006056.
  17. Lam T.Y., Lectures on modules and rings, Graduate Texts in Mathematics, Vol. 189, Springer-Verlag, New York, 1999.
  18. McCleary J., A user's guide to spectral sequences, 2nd ed., Cambridge Studies in Advanced Mathematics, Vol. 58, Cambridge University Press, Cambridge, 2001.
  19. Newlander A., Nirenberg L., Complex analytic coordinates in almost complex manifolds, Ann. of Math. 65 (1957), 391-404.
  20. Olver P.J., Invariant submanifold flows, J. Phys. A: Math. Theor. 41 (2008), 344017, 22 pages.
  21. Qi Y., Hopfological algebra, Compos. Math. 150 (2014), 1-45, arXiv:1205.1814.
  22. Seidel P., Thomas R., Braid group actions on derived categories of coherent sheaves, Duke Math. J. 108 (2001), 37-108, arXiv:math.AG/0001043.
  23. Sharapov A.A., Variational tricomplex and BRST theory, in Geometric Methods in Physics, Trends Math., Birkhäuser/Springer, Cham, 2016, 331-341, arXiv:1511.05711.
  24. Stekolshchik R., Notes on Coxeter transformations and the McKay correspondence, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2008.
  25. Stelzig J., On the structure of double complexes, arXiv:1812.00865.
  26. Weibel C.A., An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, Vol. 38, Cambridge University Press, Cambridge, 1994.
  27. Wells Jr. R.O., Differential analysis on complex manifolds, 2nd ed., Graduate Texts in Mathematics, Vol. 65, Springer-Verlag, New York - Berlin, 1980.
  28. Yau D., Deformation bicomplex of module algebras, Homology Homotopy Appl. 10 (2008), 97-128, arXiv:0707.3640.

Previous article  Next article  Contents of Volume 16 (2020)