Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 16 (2020), 011, 29 pages      arXiv:1801.07032

On Closed Finite Gap Curves in Spaceforms I

Sebastian Klein a and Martin Kilian b
a)  Lehrstuhl für Mathematik III, Universität Mannheim, B 6, 28-29, 68131 Mannheim, Germany
b)  Department of Mathematics, University College Cork, Ireland

Received June 14, 2019, in final form February 28, 2020; Published online March 04, 2020

We show that the spaces of closed finite gap curves in ${\mathbb R}^3$ and ${\mathbb S}^3$ are dense with respect to the Sobolev $W^{2,2}$-norm in the spaces of closed curves in ${\mathbb R}^3$ respectively ${\mathbb S}^3$.

Key words: closed finite gap curves; integrable systems; nonlinear Schrödinger equation; asymptotic estimates.

pdf (516 kb)   tex (36 kb)  


  1. Belokolos E.D., Bobenko A.I., Enol'skii V.Z., Its A.R., Matveev V.B., Algebro-geometric approach to nonlinear integrable equations, Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin, 1994.
  2. Calini A., Ivey T., Finite-gap solutions of the vortex filament equation: genus one solutions and symmetric solutions, J. Nonlinear Sci. 15 (2005), 321-361.
  3. Calini A., Ivey T., Finite-gap solutions of the vortex filament equation: isoperiodic deformations, J. Nonlinear Sci. 17 (2007), 527-567, arXiv:nlin.SI/0612065.
  4. Doliwa A., Santini P.M., An elementary geometric characterization of the integrable motions of a curve, Phys. Lett. A 185 (1994), 373-384.
  5. Drinfel'd V.G., Sokolov V.V., Equations of Korteweg-de Vries type, and simple Lie algebras, Dokl. Akad. Nauk SSSR 258 (1981), 11-16.
  6. Goldstein R.E., Petrich D.M., The Korteweg-de Vries hierarchy as dynamics of closed curves in the plane, Phys. Rev. Lett. 67 (1991), 3203-3206.
  7. Grafakos L., Classical Fourier analysis, 2nd ed., Graduate Texts in Mathematics, Vol. 249, Springer, New York, 2008.
  8. Grinevich P.G., Approximation theorem for the self-focusing nonlinear Schrödinger equation and for the periodic curves in ${\bf R}^3$, Phys. D 152/153 (2001), 20-27, arXiv:nlin.SI/0002020.
  9. Grinevich P.G., Santini P.M., The finite gap method and the periodic NLS Cauchy problem of anomalous waves for a finite number of unstable modes, Russian Math. Surveys 74 (2019), 211-263, arXiv:1810.09247.
  10. Grinevich P.G., Schmidt M.U., Period preserving nonisospectral flows and the moduli space of periodic solutions of soliton equations, Phys. D 87 (1995), 73-98, arXiv:solv-int/9412005.
  11. Grinevich P.G., Schmidt M.U., Closed curves in $\mathbb{R}^3$: a characterization in terms of curvature and torsion, the Hasimoto map and periodic solutions of the filament equation, arXiv:dg-ga/9703020.
  12. Grinevich P.G., Schmidt M.U., Closed curves in ${\bf R}^3$ and the nonlinear Schrödinger equation, in Proceedings of the Workshop on Nonlinearity, Integrability and All That: Twenty Years after NEEDS '79 (Gallipoli, 1999), World Sci. Publ., River Edge, NJ, 2000, 139-145.
  13. Hasimoto H., A soliton on a vortex filament, J. Fluid Mech. 51 (1972), 477-485.
  14. Kappeler T., Lohrmann P., Topalov P., Zung N.T., Birkhoff coordinates for the focusing NLS equation, Comm. Math. Phys. 285 (2009), 1087-1107.
  15. Klein S., Spectral data for simply periodic solutions of the sinh-Gordon equation, Differential Geom. Appl. 54 (2017), 129-149, arXiv:1701.03145.
  16. Klein S., A spectral theory for simply periodic solutions of the sinh-Gordon equation, Lecture Notes in Math., Vol. 2229, Springer, Cham, 2018.
  17. Klein S., Kilian M., On closed finite gap curves in spaceforms II, J. Integrable Syst., to appear, arXiv:1901.03242.
  18. Klein S., Lübcke E., Schmidt M.U., Simon T., Singular curves and Baker-Akhiezer functions, arXiv:1609.07011.
  19. Langer J., Recursion in curve geometry, New York J. Math. 5 (1999), 25-51.
  20. Langer J., Perline R., Curve motion inducing modified Korteweg-de Vries systems, Phys. Lett. A 239 (1998), 36-40.
  21. Langer J., Singer D., Curves in the hyperbolic plane and mean curvature of tori in $3$-space, Bull. London Math. Soc. 16 (1984), 531-534.
  22. Marčenko V.A., The periodic Korteweg-de Vries problem, Math USSR Sb. 24 (1974), 319-344.
  23. Schmidt M.U., Integrable systems and Riemann surfaces of infinite genus, Mem. Amer. Math. Soc. 122 (1996), viii+111 pages.
  24. Zakharov V.E., Shabat A.B., Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Soviet Phys. JETP 34 (1971), 62-69.

Previous article  Next article  Contents of Volume 16 (2020)