Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 15 (2019), 100, 11 pages      arXiv:1403.3226

Picard-Vessiot Extensions of Real Differential Fields

Teresa Crespo a and Zbigniew Hajto b
a)  Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain
b)  Faculty of Mathematics and Computer Science, Jagiellonian University, ul. Prof. S. Łojasiewicza 6, 30-348 Kraków, Poland

Received July 04, 2019, in final form December 22, 2019; Published online December 24, 2019

For a linear differential equation defined over a formally real differential field $K$ with real closed field of constants $k$, Crespo, Hajto and van der Put proved that there exists a unique formally real Picard-Vessiot extension up to $K$-differential automorphism. However such an equation may have Picard-Vessiot extensions which are not formally real fields. The differential Galois group of a Picard-Vessiot extension for this equation has the structure of a linear algebraic group defined over $k$ and is a $k$-form of the differential Galois group $H$ of the equation over the differential field $K\big(\sqrt{-1}\big)$. These facts lead us to consider two issues: determining the number of $K$-differential isomorphism classes of Picard-Vessiot extensions and describing the variation of the differential Galois group in the set of $k$-forms of $H$. We address these two issues in the cases when $H$ is a special linear, a special orthogonal, or a symplectic linear algebraic group and conclude that there is no general behaviour.

Key words: real Picard-Vessiot theory; linear algebraic groups; group cohomology; real forms of algebraic groups.

pdf (312 kb)   tex (17 kb)  


  1. Amano K., Masuoka A., Picard-Vessiot extensions of Artinian simple module algebras, J. Algebra 285 (2005), 743-767.
  2. André Y., Différentielles non commutatives et théorie de Galois différentielle ou aux différences, Ann. Sci. École Norm. Sup. (4) 34 (2001), 685-739, arXiv:math.GM/0203274.
  3. Audin M., Exemples de hamiltoniens non intégrables en mécanique analytique réelle, Ann. Fac. Sci. Toulouse Math. (6) 12 (2003), 1-23.
  4. Bachmayr A., Harbater D., Hartmann J., Differential Galois groups over Laurent series fields, Proc. Lond. Math. Soc. 112 (2016), 455-476.
  5. Bayer-Fluckiger E., Parimala R., Classical groups and the Hasse principle, Ann. of Math. 147 (1998), 651-693, Correction, Ann. of Math. 163 (2006), 381.
  6. Bochnak J., Coste M., Roy M.-F., Real algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Vol. 36, Springer-Verlag, Berlin, 1998.
  7. Borel A., Lie groups and linear algebraic groups. I. Complex and real groups, in Lie Groups and Automorphic Forms, AMS/IP Stud. Adv. Math., Vol. 37, Amer. Math. Soc., Providence, RI, 2006, 1-49.
  8. Crespo T., Hajto Z., Algebraic groups and differential Galois theory, Graduate Studies in Mathematics, Vol. 122, Amer. Math. Soc., Providence, RI, 2011.
  9. Crespo T., Hajto Z., Real Liouville extensions, Comm. Algebra 43 (2015), 2089-2093, arXiv:1206.2283.
  10. Crespo T., Hajto Z., Sowa E., Picard-Vessiot theory for real fields, Israel J. Math. 198 (2013), 75-89.
  11. Crespo T., Hajto Z., van der Put M., Real and $p$-adic Picard-Vessiot fields, Math. Ann. 365 (2016), 93-103, arXiv:1307.2388.
  12. Deligne P., Milne J.S., Tannakian categories, in Hodge cycles, motives, and Shimura varieties, Lecture Notes in Math., Vol. 900, Editors P. Deligne, J.S. Milne, A. Ogus, K.-Y. Shih, Springer-Verlag, Berlin - New York, 1982, 101-228.
  13. Dyckerhoff T., The inverse problem of differential Galois theory over the field ${\mathbb R}(z)$, arXiv:0802.2897.
  14. Gel'fond O.A., Hovanskii A.G., Real Liouville functions, Funct. Anal. Appl. 14 (1980), 122-123.
  15. Kamensky M., Pillay A., Interpretations and differential Galois extensions, Int. Math. Res. Not. 2016 (2016), 7390-7413.
  16. Kneser M., Lectures on Galois cohomology of classical groups, Tata Institute of Fundamental Research Lectures on Mathematics, Vol. 47, Tata Institute of Fundamental Research, Bombay, 1969.
  17. Knus M.-A., Merkurjev A., Rost M., Tignol J.-P., The book of involutions, American Mathematical Society Colloquium Publications, Vol. 44, Amer. Math. Soc., Providence, RI, 1998.
  18. Kolchin E.R., Algebraic matric groups and the Picard-Vessiot theory of homogeneous linear ordinary differential equations, Ann. of Math. 49 (1948), 1-42.
  19. León Sánchez O., Pillay A., Some definable Galois theory and examples, Bull. Symb. Log. 23 (2017), 145-159, arXiv:1511.05541.
  20. Malle G., Testerman D., Linear algebraic groups and finite groups of Lie type, Cambridge Studies in Advanced Mathematics, Vol. 133, Cambridge University Press, Cambridge, 2011.
  21. Prestel A., Lectures on formally real fields, Lecture Notes in Math., Vol. 1093, Springer-Verlag, Berlin, 1984.
  22. Serre J.-P., Local fields, Graduate Texts in Mathematics, Vol. 67, Springer-Verlag, New York - Berlin, 1979.
  23. Serre J.-P., Cohomologie galoisienne, 5th ed., Lecture Notes in Math., Vol. 5, Springer-Verlag, Berlin, 1994.
  24. Springer T.A., Linear algebraic groups, 2nd ed., Progress in Mathematics, Vol. 9, Birkhäuser Boston, Inc., Boston, MA, 1998.
  25. Steinberg R., Lectures on Chevalley groups, Yale University, New Haven, Conn., 1968.
  26. Tits J., Classification of algebraic semisimple groups, in Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), Amer. Math. Soc., Providence, R.I., 1966, 33-62.
  27. van der Put M., Singer M.F., Galois theory of linear differential equations, Grundlehren der Mathematischen Wissenschaften, Vol. 328, Springer-Verlag, Berlin, 2003.

Previous article  Next article  Contents of Volume 15 (2019)