Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 15 (2019), 066, 30 pages      arXiv:1906.06897

Scalar Products in Twisted XXX Spin Chain. Determinant Representation

Samuel Belliard a and Nikita A. Slavnov b
a) Institut Denis-Poisson, Université de Tours, Université d'Orléans, Parc de Grammont, 37200 Tours, France
b) Steklov Mathematical Institute of Russian Academy of Sciences, 8 Gubkina Str., Moscow, 119991, Russia

Received June 19, 2019, in final form August 27, 2019; Published online September 03, 2019

We consider XXX spin-$1/2$ Heisenberg chain with non-diagonal boundary conditions. We obtain a compact determinant representation for the scalar product of on-shell and off-shell Bethe vectors. In the particular case when both Bethe vectors are on shell, we obtain a determinant representation for the norm of on-shell Bethe vector and prove orthogonality of the on-shell vectors corresponding to the different eigenvalues of the transfer matrix.

Key words: XXX chain; non-diagonal boundary conditions; scalar product; determinant.

pdf (521 kb)   tex (30 kb)  


  1. Avan J., Belliard S., Grosjean N., Pimenta R.A., Modified algebraic Bethe ansatz for XXZ chain on the segment - III - Proof, Nuclear Phys. B 899 (2015), 229-246, arXiv:1506.02147.
  2. Baxter R.J., One-dimensional anisotropic Heisenberg chain, Ann. Physics 70 (1972), 323-337.
  3. Belliard S., Modified algebraic Bethe ansatz for XXZ chain on the segment - I: Triangular cases, Nuclear Phys. B 892 (2015), 1-20, arXiv:1408.4840.
  4. Belliard S., Crampé N., Heisenberg XXX model with general boundaries: eigenvectors from algebraic Bethe ansatz, SIGMA 9 (2013), 072, 12 pages, arXiv:1309.6165.
  5. Belliard S., Pimenta R.A., Modified algebraic Bethe ansatz for XXZ chain on the segment - II - General cases, Nuclear Phys. B 894 (2015), 527-552, arXiv:1412.7511.
  6. Belliard S., Pimenta R.A., Slavnov and Gaudin-Korepin formulas for models without ${\rm U}(1)$ symmetry: the twisted XXX chain, SIGMA 11 (2015), 099, 12 pages, arXiv:1506.06550.
  7. Belliard S., Slavnov N.A., A note on $\mathfrak{gl}_2$-invariant Bethe vectors, J. High Energy Phys. 2018 (2018), no. 4, 031, 15 pages, arXiv:1802.07576.
  8. Belliard S., Slavnov N.A., Vallet B., Modified algebraic Bethe ansatz: twisted XXX case, SIGMA 14 (2018), 054, 18 pages, arXiv:1804.00597.
  9. Belliard S., Slavnov N.A., Vallet B., Scalar product of twisted XXX modified Bethe vectors, J. Stat. Mech. Theory Exp. (2018), 093103, 29 pages, arXiv:1805.11323.
  10. Cao J., Yang W.-L., Shi K., Wang Y., Off-diagonal Bethe ansatz and exact solution a topological spin ring, Phys. Rev. Lett. 111 (2013), 137201, 5 pages, arXiv:1305.7328.
  11. Cao J., Yang W.-L., Shi K., Wang Y., Off-diagonal Bethe ansatz solution of the XXX spin chain with arbitrary boundary conditions, Nuclear Phys. B 875 (2013), 152-165, arXiv:1306.1742.
  12. Crampé N., Algebraic Bethe ansatz for the totally asymmetric simple exclusion process with boundaries, J. Phys. A: Math. Theor. 48 (2015), 08FT01, 12 pages, arXiv:1411.7954.
  13. Derkachev S.E., The $R$-matrix factorization, $Q$-operator, and variable separation in the case of the XXX spin chain with the ${\rm SL}(2,{\mathbb C})$ symmetry group, Theoret. and Math. Phys. 169 (2011), 1539-1550.
  14. Faddeev L.D., How the algebraic Bethe ansatz works for integrable models, in Symétries quantiques (Les Houches, 1995), North-Holland, Amsterdam, 1998, 149-219, arXiv:hep-th/9605187.
  15. Faddeev L.D., Sklyanin E.K., Takhtajan L.A., Quantum inverse problem. I, Theoret. and Math. Phys. 40 (1979), 688-706.
  16. Gaudin M., Modèles exacts en mécanique statistique: la méthode de Bethe et ses généralisations, Preprint, Centre d'Etudes Nucléaires de Saclay, CEA-N-1559:1, 1972.
  17. Gaudin M., La fonction d'onde de Bethe, Collection du Commissariat à l'Énergie Atomique: Série Scientifique, Masson, Paris, 1983.
  18. Göhmann F., Klümper A., Seel A., Integral representations for correlation functions of the $XXZ$ chain at finite temperature, J. Phys. A: Math. Gen. 37 (2004), 7625-7651, arXiv:hep-th/0405089.
  19. Gorsky A., Zabrodin A., Zotov A., Spectrum of quantum transfer matrices via classical many-body systems, J. High Energy Phys. 2014 (2014), no. 1, 070, 28 pages, arXiv:1310.6958.
  20. Izergin A.G., Partition function of the six-vertex model in a finite volume, Sov. Phys. Dokl. 32 (1987), 878-879.
  21. Kitanine N., Kozlowski K.K., Maillet J.M., Slavnov N.A., Terras V., Form factor approach to dynamical correlation functions in critical models, J. Stat. Mech. Theory Exp. 2012 (2012), P09001, 33 pages, arXiv:1206.2630.
  22. Kitanine N., Maillet J.M., Niccoli G., Terras V., The open XXX spin chain in the SoV framework: scalar product of separate states, J. Phys. A: Math. Theor. 50 (2017), 224001, 35 pages, arXiv:1606.06917.
  23. Kitanine N., Maillet J.M., Slavnov N.A., Terras V., Master equation for spin-spin correlation functions of the $XXZ$ chain, Nuclear Phys. B 712 (2005), 600-622, arXiv:hep-th/0406190.
  24. Kitanine N., Maillet J.M., Terras V., Form factors of the $XXZ$ Heisenberg spin-$\frac 12$ finite chain, Nuclear Phys. B 554 (1999), 647-678, arXiv:math-ph/9807020.
  25. Kitanine N., Maillet J.M., Terras V., Correlation functions of the $XXZ$ Heisenberg spin-${1\over2}$ chain in a magnetic field, Nuclear Phys. B 567 (2000), 554-582, arXiv:math-ph/9907019.
  26. Korepin V.E., Calculation of norms of Bethe wave functions, Comm. Math. Phys. 86 (1982), 391-418.
  27. Korepin V.E., Bogoliubov N.M., Izergin A.G., Quantum inverse scattering method and correlation functions, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1993.
  28. Nepomechie R.I., An inhomogeneous $T$-$Q$ equation for the open XXX chain with general boundary terms: completeness and arbitrary spin, J. Phys. A: Math. Theor. 46 (2013), 442002, 7 pages, arXiv:1307.5049.
  29. Sklyanin E.K., Boundary conditions for integrable quantum systems, J. Phys. A: Math. Gen. 21 (1988), 2375-2389.
  30. Sklyanin E.K., Quantum inverse scattering method. Selected topics, in Quantum Group and Quantum Integrable Systems, Nankai Lectures Math. Phys., World Sci. Publ., River Edge, NJ, 1992, 63-97, arXiv:hep-th/9211111.
  31. Slavnov N.A., Calculation of scalar products of wave functions and form factors in the framework of the algebraic Bethe ansatz, Theoret. and Math. Phys. 79 (1989), 502-508.
  32. Takhtadzhan L.A., Faddeev L.D., The quantum method for the inverse problem and the Heisenberg $XYZ$ model, Russian Math. Surveys 34 (1979), no. 5, 11-68.
  33. Wang Y., Yang W.-L., Cao J., Shi K., Off-diagonal Bethe ansatz for exactly solvable models, Springer, Heidelberg, 2015.

Previous article  Next article  Contents of Volume 15 (2019)