Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 15 (2019), 038, 33 pages      arXiv:1809.02951

The Laurent Extension of Quantum Plane: a Complete List of $U_q(\mathfrak{sl}_2)$-Symmetries

Sergey Sinel'shchikov
Mathematics Division, B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, 47 Nauky Ave., 61103 Kharkiv, Ukraine

Received September 11, 2018, in final form April 17, 2019; Published online May 09, 2019

This work finishes a classification of $U_q(\mathfrak{sl}_2)$-symmetries on the Laurent extension $\mathbb{C}_q\big[x^{\pm 1},y^{\pm 1}\big]$ of the quantum plane. After reproducing the partial results of a previous paper of the author related to symmetries with non-trivial action of the Cartan generator(s) of $U_q(\mathfrak{sl}_2)$ and the generic symmetries, a complete collection of non-generic symmetries is presented. Together, these collections constitute a complete list of $U_q(\mathfrak{sl}_2)$-symmetries on $\mathbb{C}_q\big[x^{\pm 1},y^{\pm 1}\big]$.

Key words: quantum universal enveloping algebra; Hopf algebra; Laurent polynomial; quantum symmetry; weight.

pdf (556 kb)   tex (30 kb)  


  1. Abe E., Hopf algebras, Cambridge Tracts in Mathematics, Vol. 74, Cambridge University Press, Cambridge - New York, 1980.
  2. Alev J., Dumas F., Rigidité des plongements des quotients primitifs minimaux de $U_q(\mathfrak{sl}(2))$ dans l'algèbre quantique de Weyl-Hayashi, Nagoya Math. J. 143 (1996), 119-146.
  3. Duplij S., Hong Y., Li F., $U_q(\mathfrak{sl}(m+1))$-module algebra structures on the coordinate algebra of a quantum vector space, J. Lie Theory 25 (2015), 327-361.
  4. Duplij S., Sinel'shchikov S., Classification of $U_q(\mathfrak{sl}_2)$-module algebra structures on the quantum plane, J. Math. Phys. Anal. Geom. 6 (2010), 406-430, arXiv:0905.1719.
  5. Kassel C., Quantum groups, Graduate Texts in Mathematics, Vol. 155, Springer-Verlag, New York, 1995.
  6. Kirkman E., Procesi C., Small L., A $q$-analog for the Virasoro algebra, Comm. Algebra 22 (1994), 3755-3774.
  7. Park H.G., Lee J., Choi S.H., Chen X.Q., Nam K.-B., Automorphism groups of some algebras, Sci. China Ser. A 52 (2009), 323-328.
  8. Sinel'shchikov S., Generic symmetries of the Laurent extension of quantum plane, J. Math. Phys. Anal. Geom. 11 (2015), 333-358, arXiv:1410.8074.
  9. Sweedler M.E., Hopf algebras, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York, 1969.

Previous article  Next article  Contents of Volume 15 (2019)