Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 14 (2018), 099, 21 pages      arXiv:1803.01247

Generalized Lennard-Jones Potentials, SUSYQM and Differential Galois Theory

Manuel F. Acosta-Humánez a, Primitivo B. Acosta-Humánez bc and Erick Tuirán d
a) Departamento de Física, Universidad Nacional de Colombia, Sede Bogotá, Ciudad Universitaria 111321, Bogotá, Colombia
b) Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, Sede 3, Carrera 59 No. 58-135. Barranquilla, Colombia
c) Instituto Superior de Formación Docente Salomé Ureña - ISFODOSU, Recinto Emilio Prud'Homme, Calle R. C. Tolentino \#51, esquina 16 de Agosto, Los Pepines, Santiago de los Caballeros, República Dominicana
d) Departamento de Física y Geociencias, Universidad del Norte, Km 5 Vía a Puerto Colombia AA 1569, Barranquilla, Colombia

Received May 01, 2018, in final form September 14, 2018; Published online September 19, 2018

In this paper we start with proving that the Schrödinger equation (SE) with the classical $12-6$ Lennard-Jones (L-J) potential is nonintegrable in the sense of the differential Galois theory (DGT), for any value of energy; i.e., there are no solutions in closed form for such differential equation. We study the $10-6$ potential through DGT and SUSYQM; being it one of the two partner potentials built with a superpotential of the form $w(r)\propto 1/r^5$. We also find that it is integrable in the sense of DGT for zero energy. A first analysis of the applicability and physical consequences of the model is carried out in terms of the so called De Boer principle of corresponding states. A comparison of the second virial coefficient $B(T)$ for both potentials shows a good agreement for low temperatures. As a consequence of these results we propose the $10-6$ potential as an integrable alternative to be applied in further studies instead of the original $12-6$ L-J potential. Finally we study through DGT and SUSYQM the integrability of the SE with a generalized $(2\nu-2)-\nu$ L-J potential. This analysis do not include the study of square integrable wave functions, excited states and energies different than zero for the generalization of L-J potentials.

Key words: Lennard-Jones potential; differential Galois theory; SUSYQM; De Boer principle of corresponding states.

pdf (534 kb)   tex (85 kb)


  1. Acosta-Humánez P.B., Galoisian approach to supersymmetric quantum mechanics, Ph.D. Thesis, Universitat Politècnica de Catalunya, Barcelona, 2009, arXiv:0906.3532.
  2. Acosta-Humánez P.B., Nonautonomous Hamiltonian systems and Morales-Ramis theory. I. The case $\ddot x=f(x,t)$, SIAM J. Appl. Dyn. Syst. 8 (2009), 279-297, arXiv:0808.3028.
  3. Acosta-Humánez P.B., Galoisian approach to supersymmetric quantum mechanics. The integrability analysis of the Schrödinger equation by means of differential Galois theory, VDM Verlag, Dr. Müller, Berlin, 2010.
  4. Acosta-Humánez P.B., Alvarez-Ramírez M., Blázquez-Sanz D., Delgado J., Non-integrability criterium for normal variational equations around an integrable subsystem and an example: the Wilberforce spring-pendulum, Discrete Contin. Dyn. Syst. Ser. A 33 (2013), 965-986, arXiv:1104.0312.
  5. Acosta-Humánez P.B., Álvarez Ramírez M., Delgado J., Non-integrability of some few body problems in two degrees of freedom, Qual. Theory Dyn. Syst. 8 (2009), 209-239, arXiv:0811.2638.
  6. Acosta-Humánez P.B., Blázquez-Sanz D., Hamiltonian system and variational equations with polynomial coefficients, in Dynamic Systems and Applications, Vol. 5, Dynamic, Atlanta, GA, 2008, 6-10.
  7. Acosta-Humánez P.B., Blázquez-Sanz D., Non-integrability of some Hamiltonians with rational potentials, Discrete Contin. Dyn. Syst. Ser. B 10 (2008), 265-293, math-ph/0610010.
  8. Acosta-Humánez P.B., Blazquez-Sanz D., Vargas-Contreras C.A., On Hamiltonian potentials with quartic polynomial normal variational equations, Nonlinear Stud. 16 (2009), 299-313, arXiv:0809.0135.
  9. Acosta-Humánez P.B., Kryuchkov S.I., Suazo E., Suslov S.K., Degenerate parametric amplification of squeezed photons: explicit solutions, statistics, means and variance, J. Nonlinear Opt. Phys. Mater. 24 (2015), 1550021, 27 pages, arXiv:1311.2479.
  10. Acosta-Humánez P.B., Lázaro J.T., Morales-Ruiz J.J., Pantazi C., On the integrability of polynomial vector fields in the plane by means of Picard-Vessiot theory, Discrete Contin. Dyn. Syst. Ser. A 35 (2015), 1767-1800.
  11. Acosta-Humánez P.B., Morales Ruiz J.J., Weil J.A., Galoisian approach to integrability of Schrödinger equation, Rep. Math. Phys. 67 (2011), 305-374, arXiv:1008.3445.
  12. Acosta-Humánez P.B., Pantazi C., Darboux integrals for Schrödinger planar vector fields via Darboux transformations, SIGMA 8 (2012), 043, 26 pages, arXiv:1111.0120.
  13. Acosta-Humánez P.B., Suazo E., Liouvillian propagators, Riccati equation and differential Galois theory, J. Phys. A: Math. Theor. 46 (2013), 455203, 17 pages, arXiv:1304.5698.
  14. Acosta-Humánez P.B., Suazo E., Liouvillian propagators and degenerate parametric amplification with time-dependent pump amplitude and phase, in Analysis, Modelling, Optimization, and Numerical Techniques, Springer Proc. Math. Stat., Vol. 121, Springer, Cham, 2015, 295-307.
  15. Braverman A., Etingof P., Gaitsgory D., Quantum integrable systems and differential Galois theory, Transform. Groups 2 (1997), 31-56, alg-geom/9607012.
  16. Cohen-Tannoudji C., Diu B., Lalöe F., Quantum mechanics, Vol. 1, John Wiley & Sons, New York, 1977.
  17. Cooper F., Khare A., Sukhatme U., Supersymmetry and quantum mechanics, Phys. Rep. 251 (1995), 267-385, hep-th/9405029.
  18. De Boer J., Quantum theory of condensed permanent gases. I. The law of corresponding states, Physica 14 (1948), 139-148.
  19. De Boer J., Michels A., Contribution to the quantum-mechanical theory of the equation of state and the law of corresponding states. Determination of the law of force of helium, Physica 5 (1938), 945-957.
  20. Duval A., Loday-Richaud M., Kovačič's algorithm and its application to some families of special functions, Appl. Algebra Engrg. Comm. Comput. 3 (1992), 211-246.
  21. Gangopadhyaya A., Mallow J.V., Rasinariu C., Supersymmetric quantum mechanics. An introduction, World Scientific, Singapore, 2011.
  22. Gozzi E., Reuter M., Thacker W.D., Symmetries of the classical path integral on a generalized phase-space manifold, Phys. Rev. D 46 (1992), 757-765.
  23. Guggenheim E.A., The principle of corresponding states, J. Chem. Phys. 13 (1945), 253-261.
  24. Hansen J.-P., Verlet L., Phase transition on the Lennard-Jones system, Phys. Rev. 184 (1969), 151-161.
  25. Horváth G., Kawazoe K., Method for the calculation of effective pore size distribution in molecular sieve carbon, J. Chem. Eng. Japan 16 (1983), 470-475.
  26. Hurley A.C., Lennard-Jones J.E., Pople J.A., The molecular orbital theory of chemical valency. XVI. A theory of paired-electrons in polyatomic molecules, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 220 (1953), 446-455.
  27. Jorgensen W.L., Transferable intermolecular potential functions for water, alcohols and ethers. Application to liquid water, J. Amer. Chem. Soc. 103 (1981), 335-340.
  28. Keller J.B., Zumino B., Determination of intermolecular potentials from thermodynamic data and the law of corresponding states, J. Chem. Phys. 30 (1959), 1351-1353.
  29. Kolchin E.R., Differential algebra and algebraic groups, Pure and Applied Mathematics, Vol. 54, Academic Press, New York - London, 1973.
  30. Kovacic J.J., An algorithm for solving second order linear homogeneous differential equations, J. Symbolic Comput. 2 (1986), 3-43.
  31. Landau D.P., Binder K., A guide to Monte Carlo simulations in statistical physics, 3rd ed., Cambridge University Press, Cambridge, 2009.
  32. Lennard-Jones J.E., On the determination of molecular fields. I. From the variation of the viscosity of a gas with temperature, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 106 (1924), 441-462.
  33. Lennard-Jones J.E., On the determination of molecular fields. II. From the equation of state of a gas, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 106 (1924), 463-477.
  34. Lennard-Jones J.E., Cohesion, Proc. Phys. Soc. 43 (1931), 461-482.
  35. Lennard-Jones J.E., Devonshire A.F., Critical phenomena in gases - I, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 163 (1937), 53-70.
  36. McQuarrie D.A., Statistical mechanics, University Science Books, Sausalito, 2000.
  37. Mecke M., Winkelmann J., Fischer J., Molecular dynamics simulation of the liquid-vapor interface: the Lennard-Jones fluid, J. Chem. Phys. 107 (1997), 9264-9270.
  38. Mie G., Zur kinetischen Theorie der einatomigen Körper, Ann. Phys. 11 (1903), 657-697.
  39. Miller M.D., Nosanow L.H., Parish L.J., Zero-temperature properties of matter and the quantum theorem of corresponding states. II. The liquid-to-gas phase transition for Fermi and Bose systems, Phys. Rev. B 15 (1977), 214-229.
  40. Morales Ruiz J.J., Differential Galois theory and non-integrability of Hamiltonian systems, Progress in Mathematics, Vol. 179, Birkhäuser Verlag, Basel, 1999.
  41. Mulero A., Cuadros F., Isosteric heat of adsorption for monolayers of Lennard-Jones fluids onto flat surfaces, Chem. Phys. 205 (1996), 379-388.
  42. Olivier J.P., Modeling physical adsorption on porous and nonporous solids using density functional theory, J. Porous Mater. 2 (1995), 9-17.
  43. Pade J., Exact scattering length for a potential of Lennard-Jones type, Eur. Phys. J. D 44 (2007), 345-350.
  44. Pitzer K.S., Corresponding states for perfect liquids, J. Chem. Phys. 7 (1939), 583-590.
  45. Ramis J.-P., Martinet J., Théorie de Galois différentielle et resommation, in Computer Algebra and Differential Equations, Comput. Math. Appl., Academic Press, London, 1990, 117-214.
  46. Semenov-Tian-Shansky M.A., Lax operators, Poisson groups, and the differential Galois theory, Theoret. and Math. Phys. 181 (2014), 1279-1301.
  47. Singer M.F., Liouvillian solutions of $n$th order homogeneous linear differential equations, Amer. J. Math. 103 (1981), 661-682.
  48. Storck S., Bretinger H., Maier W.F., Characterization of micro- and mesoporous solids by physisorption methods and pore-size analysis, Appl. Catalysis A 174 (1998), 137-146.
  49. van der Put M., Singer M.F., Galois theory of linear differential equations, Grundlehren der Mathematischen Wissenschaften, Vol. 328, Springer-Verlag, Berlin, 2003.
  50. van der Waals J.D., The law of corresponding states for different substances, Proc. Kon. Nederl. Akad. Wetenschappen 15 (1913), 971-981.
  51. Witten E., Dynamical breaking of supersymmetry, Nuclear Phys. B 188 (1981), 513-554.

Previous article  Next article   Contents of Volume 14 (2018)