Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 14 (2018), 090, 32 pages      arXiv:1803.06072
Contribution to the Special Issue on Modular Forms and String Theory in honor of Noriko Yui

Computing Special $L$-Values of Certain Modular Forms with Complex Multiplication

Wen-Ching Winnie Li a, Ling Long b and Fang-Ting Tu b
a) Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA
b) Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803, USA

Received April 03, 2018, in final form August 18, 2018; Published online August 29, 2018

In this expository paper, we illustrate two explicit methods which lead to special $L$-values of certain modular forms admitting complex multiplication (CM), motivated in part by properties of $L$-functions obtained from Calabi-Yau manifolds defined over $\mathbb Q$.

Key words: $L$-values; modular forms; complex multiplications; hypergeometric functions; Eisenstein series.

pdf (540 kb)   tex (39 kb)


  1. Andrews G.E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, Vol. 71, Cambridge University Press, Cambridge, 1999.
  2. Atkin A.O.L., Li W.-C.W., Long L., On Atkin and Swinnerton-Dyer congruence relations. II, Math. Ann. 340 (2008), 335-358, math.NT/0512614.
  3. Borwein J.M., Borwein P.B., Pi and the AGM. A study in analytic number theory and computational complexity, Canadian Mathematical Society Series of Monographs and Advanced Texts, Vol. 4, John Wiley & Sons, Inc., New York, 1998.
  4. Borwein J.M., Borwein P.B., Garvan F.G., Some cubic modular identities of Ramanujan, Trans. Amer. Math. Soc. 343 (1994), 35-47.
  5. Coates J., Wiles A., Kummer's criterion for Hurwitz numbers, in Algebraic Number Theory (Kyoto Internat. Sympos., Res. Inst. Math. Sci., Univ. Kyoto, Kyoto, 1976), Japan Soc. Promotion Sci., Tokyo, 1977, 9-23.
  6. Cohen H., Number theory. Vol. II. Analytic and modern tools, Graduate Texts in Mathematics, Vol. 240, Springer, New York, 2007.
  7. Cohen H., Strömberg F., Modular forms. A classical approach, Graduate Studies in Mathematics, Vol. 179, Amer. Math. Soc., Providence, RI, 2017.
  8. Damerell R.M., $L$-functions of elliptic curves with complex multiplication. I, Acta Arith. 17 (1970), 287-301.
  9. Damerell R.M., $L$-functions of elliptic curves with complex multiplication. II, Acta Arith. 19 (1971), 311-317.
  10. Deligne P., Valeurs de fonctions $L$ et périodes d'intégrales, in Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., Vol. 33, Amer. Math. Soc., Providence, R.I., 1979, 313-346.
  11. Diamond F., Shurman J., A first course in modular forms, Graduate Texts in Mathematics, Vol. 228, Springer-Verlag, New York, 2005.
  12. Gouvêa F.Q., Yui N., Rigid Calabi-Yau threefolds over $\mathbb Q$ are modular, Expo. Math. 29 (2011), 142-149, arXiv:0902.1466.
  13. Gross B.H., On the periods of abelian integrals and a formula of Chowla and Selberg, Invent. Math. 45 (1978), 193-211.
  14. Haberland K., Perioden von Modulformen einer Variabler and Gruppencohomologie. I, Math. Nachr. 112 (1983), 245-282.
  15. Haberland K., Perioden von Modulformen einer Variabler and Gruppencohomologie. II, Math. Nachr. 112 (1983), 283-295.
  16. Haberland K., Perioden von Modulformen einer Variabler and Gruppencohomologie. III, Math. Nachr. 112 (1983), 297-315.
  17. Hurwitz A., Ueber die Entwickelungscoefficienten der lemniscatischen Functionen, Math. Ann. 51 (1898), 196-226.
  18. Kazalicki M., Scholl A.J., Modular forms, de Rham cohomology and congruences, Trans. Amer. Math. Soc. 368 (2016), 7097-7117, arXiv:1301.5876.
  19. Knopp M.I., Modular functions in analytic number theory, Markham Publishing Co., Chicago, Ill., 1970.
  20. Kohnen W., Zagier D., Modular forms with rational periods, in Modular Forms (Durham, 1983), Ellis Horwood Ser. Math. Appl.: Statist. Oper. Res., Horwood, Chichester, 1984, 197-249.
  21. Lee J.-J., Murty M.R., Park D., Generalization of a theorem of Hurwitz, J. Ramanujan Math. Soc. 31 (2016), 215-226.
  22. Li W.-C.W., Number theory with applications, Series on University Mathematics, Vol. 7, World Scientific Publishing Co., Inc., River Edge, NJ, 1996.
  23. Long L., Tu F.-T., Yui N., Zudilin W., Supercongruences for rigid hypergeometric Calabi-Yau threefolds, arXiv:1705.01663.
  24. Manin Yu.I., Periods of parabolic forms and $p$-adic Hecke series, Math. USSR Sb. 21 (1973), 371-393.
  25. Neukirch J., Algebraic number theory, Grundlehren der Mathematischen Wissenschaften, Vol. 322, Springer-Verlag, Berlin, 1999.
  26. Ogg A., Modular forms and Dirichlet series, W.A. Benjamin, Inc., New York - Amsterdam, 1969.
  27. Paşol V., Popa A.A., Modular forms and period polynomials, Proc. Lond. Math. Soc. 107 (2013), 713-743, arXiv:1202.5802.
  28. Rogers M., Wan J.G., Zucker I.J., Moments of elliptic integrals and critical $L$-values, Ramanujan J. 37 (2015), 113-130, arXiv:1303.2259.
  29. Schoeneberg B., Elliptic modular functions: an introduction, Die Grundlehren der mathematischen Wissenschaften, Vol. 203, Springer-Verlag, New York - Heidelberg, 1974.
  30. Sebbar A., Modular subgroups, forms, curves and surfaces, Canad. Math. Bull. 45 (2002), 294-308.
  31. Selberg A., Chowla S., On Epstein's zeta-function, J. Reine Angew. Math. 227 (1967), 86-110.
  32. Serre J.-P., Sur la lacunarité des puissances de $\eta$, Glasgow Math. J. 27 (1985), 203-221.
  33. Shimura G., On the periods of modular forms, Math. Ann. 229 (1977), 211-221.
  34. Shimura G., Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, Vol. 11, Princeton University Press, Princeton, NJ, 1994.
  35. Shioda T., Inose H., On singular $K3$ surfaces, in Complex Analysis and Algebraic Geometry, Iwanami Shoten, Tokyo, 1977, 119-136.
  36. Silverman J.H., Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, Vol. 151, Springer-Verlag, New York, 1994.
  37. Stienstra J., Beukers F., On the Picard-Fuchs equation and the formal Brauer group of certain elliptic $K3$-surfaces, Math. Ann. 271 (1985), 269-304.
  38. Tate J.T., Fourier analysis in number fields, and Hecke's zeta-functions, in Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), Thompson, Washington, D.C., 1967, 305-347.
  39. Tu F.-T., Yang Y., Algebraic transformations of hypergeometric functions and automorphic forms on Shimura curves, Trans. Amer. Math. Soc. 365 (2013), 6697-6729, arXiv:1112.1001.
  40. Villegas F.R., Zagier D., Square roots of central values of Hecke $L$-series, in Advances in Number Theory (Kingston, ON, 1991), Oxford Sci. Publ., Oxford University Press, New York, 1993, 81-99.
  41. Weil A., Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann. 168 (1967), 149-156.
  42. Yager R.I., A Kummer criterion for imaginary quadratic fields, Compositio Math. 47 (1982), 31-42.
  43. Yang Y., Schwarzian differential equations and Hecke eigenforms on Shimura curves, Compos. Math. 149 (2013), 1-31, arXiv:1110.6284.
  44. Yui N., Modularity of Calabi-Yau varieties: 2011 and beyond, in Arithmetic and Geometry of K3 Surfaces and Calabi-Yau Threefolds, Fields Inst. Commun., Vol. 67, Springer, New York, 2013, 101-139, arXiv:1212.4308.
  45. Zagier D., Elliptic modular forms and their applications, in The 1-2-3 of Modular Forms, Universitext, Springer, Berlin, 2008, 1-103.

Previous article  Next article   Contents of Volume 14 (2018)