Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 14 (2018), 025, 44 pages      arXiv:1704.00020
Contribution to the Special Issue on Elliptic Hypergeometric Functions and Their Applications

Elliptic Well-Poised Bailey Transforms and Lemmas on Root Systems

Gaurav Bhatnagar and Michael J. Schlosser
Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria

Received September 01, 2017, in final form March 13, 2018; Published online March 22, 2018

We list $A_n$, $C_n$ and $D_n$ extensions of the elliptic WP Bailey transform and lemma, given for $n=1$ by Andrews and Spiridonov. Our work requires multiple series extensions of Frenkel and Turaev's terminating, balanced and very-well-poised ${}_{10}V_9$ elliptic hypergeometric summation formula due to Rosengren, and Rosengren and Schlosser. In our study, we discover two new $A_n$ ${}_{12}V_{11}$ transformation formulas, that reduce to two new $A_n$ extensions of Bailey's $_{10}\phi_9$ transformation formulas when the nome $p$ is $0$, and two multiple series extensions of Frenkel and Turaev's sum.

Key words: $A_n$ elliptic and basic hypergeometric series; elliptic and basic hypergeometric series on root systems; well-poised Bailey transform and lemma.

pdf (645 kb)   tex (45 kb)


  1. Agarwal A.K., Andrews G.E., Bressoud D.M., The Bailey lattice, J. Indian Math. Soc. (N.S.) 51 (1987), 57-73.
  2. Andrews G.E., Bailey's transform, lemma, chains and tree, in Special Functions 2000: Current Perspective and Future Directions (Tempe, AZ), NATO Sci. Ser. II Math. Phys. Chem., Vol. 30, Kluwer Acad. Publ., Dordrecht, 2001, 1-22.
  3. Andrews G.E., Berkovich A., The WP-Bailey tree and its implications, J. London Math. Soc. 66 (2002), 529-549, math.CO/0109141.
  4. Andrews G.E., Schilling A., Warnaar S.O., An $A_2$ Bailey lemma and Rogers-Ramanujan-type identities, J. Amer. Math. Soc. 12 (1999), 677-702, math.QA/9807125.
  5. Bailey W.N., An identity involving Heine's basic hypergeometric series, J. London Math. Soc. 4 (1929), 254-257.
  6. Bailey W.N., Some identities in combinatory analysis, Proc. London Math. Soc. 49 (1947), 421-425.
  7. Bartlett N., Warnaar S.O., Hall-Littlewood polynomials and characters of affine Lie algebras, Adv. Math. 285 (2015), 1066-1105, arXiv:1304.1602.
  8. Bhatnagar G., Inverse relations, generalized bibasic series, and their ${\rm U}(n)$ extensions, Ph.D. Thesis, The Ohio State University, 1995.
  9. Bhatnagar G., $D_n$ basic hypergeometric series, Ramanujan J. 3 (1999), 175-203.
  10. Bhatnagar G., Schlosser M., $C_n$ and $D_n$ very-well-poised ${}_{10}\phi_9$ transformations, Constr. Approx. 14 (1998), 531-567.
  11. Bressoud D.M., A matrix inverse, Proc. Amer. Math. Soc. 88 (1983), 446-448.
  12. Brünner F., Spiridonov V.P., A duality web of linear quivers, Phys. Lett. B 761 (2016), 261-264, arXiv:1605.06991.
  13. Coskun H., An elliptic $BC_n$ Bailey lemma, multiple Rogers-Ramanujan identities and Euler's pentagonal number theorems, Trans. Amer. Math. Soc. 360 (2008), 5397-5433, math.CO/0605653.
  14. Denis R.Y., Gustafson R.A., An ${\rm SU}(n)$ $q$-beta integral transformation and multiple hypergeometric series identities, SIAM J. Math. Anal. 23 (1992), 552-561.
  15. van Diejen J.F., On certain multiple Bailey, Rogers and Dougall type summation formulas, Publ. Res. Inst. Math. Sci. 33 (1997), 483-508, math.CO/9712265.
  16. Frenkel I.B., Turaev V.G., Elliptic solutions of the Yang-Baxter equation and modular hypergeometric functions, in The Arnold-Gelfand Mathematical Seminars, Birkhäuser Boston, Boston, MA, 1997, 171-204.
  17. Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, Vol. 96, 2nd ed., Cambridge University Press, Cambridge, 2004.
  18. Griffin M.J., Ono K., Warnaar S.O., A framework of Rogers-Ramanujan identities and their arithmetic properties, Duke Math. J. 165 (2016), 1475-1527, arXiv:1401.7718.
  19. Gustafson R.A., The Macdonald identities for affine root systems of classical type and hypergeometric series very-well-poised on semisimple Lie algebras, in Ramanujan International Symposium on Analysis (Pune, 1987), Macmillan of India, New Delhi, 1989, 185-224.
  20. Jackson F.H., Summation of $q$-hypergeometric series,, Messenger Math. 50 (1920), 101-112.
  21. Jouhet F., Shifted versions of the Bailey and well-poised Bailey lemmas, Ramanujan J. 23 (2010), 315-333, arXiv:0906.1870.
  22. Macdonald I.G., Symmetric functions and Hall polynomials, 2nd ed., Oxford Classic Texts in the Physical Sciences, The Clarendon Press, Oxford University Press, New York, 2015.
  23. McLaughlin J., Sills A.V., Zimmer P., Lifting Bailey pairs to WP-Bailey pairs, Discrete Math. 309 (2009), 5077-5091.
  24. Milne S.C., An elementary proof of the Macdonald identities for $A^{(1)}_l$, Adv. Math. 57 (1985), 34-70.
  25. Milne S.C., Multiple $q$-series and ${\rm U}(n)$ generalizations of Ramanujan's $_1\Psi_1$ sum, in Ramanujan Revisited (Urbana-Champaign, Ill., 1987), Academic Press, Boston, MA, 1988, 473-524.
  26. Milne S.C., A $q$-analog of a Whipple's transformation for hypergeometric series in ${\rm U}(n)$, Adv. Math. 108 (1994), 1-76.
  27. Milne S.C., Balanced $_3\phi_2$ summation theorems for ${\rm U}(n)$ basic hypergeometric series, Adv. Math. 131 (1997), 93-187.
  28. Milne S.C., A new ${\rm U}(n)$ generalization of the Jacobi triple product identity, in $q$-Series from a Contemporary Perspective (South Hadley, MA, 1998), Contemp. Math., Vol. 254, Amer. Math. Soc., Providence, RI, 2000, 351-370.
  29. Milne S.C., Lilly G.M., Consequences of the $A_l$ and $C_l$ Bailey transform and Bailey lemma, Discrete Math. 139 (1995), 319-346.
  30. Milne S.C., Newcomb J.W., ${\rm U}(n)$ very-well-poised $_{10}\phi_9$ transformations, J. Comput. Appl. Math. 68 (1996), 239-285.
  31. Rosengren H., Elliptic hypergeometric series on root systems, Adv. Math. 181 (2004), 417-447, math.CA/0207046.
  32. Rosengren H., Elliptic hypergeometric functions, arXiv:1608.06161.
  33. Rosengren H., Private communication, 2016.
  34. Rosengren H., Gustafson-Rakha-type elliptic hypergeometric series, SIGMA 13 (2017), 037, 11 pages, arXiv:1701.08960.
  35. Rosengren H., Schlosser M., Multidimensional matrix inversions and elliptic hypergeometric series on root systems, in preparation.
  36. Schlosser M., Multidimensional matrix inversions and $A_r$ and $D_r$ basic hypergeometric series, Ramanujan J. 1 (1997), 243-274.
  37. Schlosser M., Elliptic enumeration of nonintersecting lattice paths, J. Combin. Theory Ser. A 114 (2007), 505-521, math.CO/0602260.
  38. Schlosser M., A new multivariable $_6\psi_6$ summation formula, Ramanujan J. 17 (2008), 305-319, math.CA/0607122.
  39. Spiridonov V.P., An elliptic incarnation of the Bailey chain, Int. Math. Res. Not. 2002 (2002), 1945-1977.
  40. Spiridonov V.P., Theta hypergeometric series, in Asymptotic Combinatorics with Application to Mathematical Physics (St. Petersburg, 2001), NATO Sci. Ser. II Math. Phys. Chem., Vol. 77, Kluwer Acad. Publ., Dordrecht, 2002, 307-327, math.CA/0303204.
  41. Spiridonov V.P., Bailey's tree for integrals, Theoret. and Math. Phys. 139 (2004), 104-111, math.CA/0312502.
  42. Spiridonov V.P., Essays on the theory of elliptic hypergeometric functions, Russian Math. Surveys 63 (2008), 405-472, arXiv:0805.3135.
  43. Spiridonov V.P., Warnaar S.O., Inversions of integral operators and elliptic beta integrals on root systems, Adv. Math. 207 (2006), 91-132, math.CA/0411044.
  44. Srivastava H.M., Singh S.N., Singh S.P., Yadav V., Certain derived WP-Bailey pairs and transformation formulas for $q$-hypergeometric series, Filomat 31 (2017), 4619-4628.
  45. Warnaar S.O., 50 years of Bailey's lemma, in Algebraic Combinatorics and Applications (Göß weinstein, 1999), Springer, Berlin, 2001, 333-347, arXiv:0910.2062.
  46. Warnaar S.O., Summation and transformation formulas for elliptic hypergeometric series, Constr. Approx. 18 (2002), 479-502, math.QA/0001006.
  47. Warnaar S.O., Extensions of the well-poised and elliptic well-poised Bailey lemma, Indag. Math. (N.S.) 14 (2003), 571-588, math/0309241.
  48. Warnaar S.O., Private communication, 2016.
  49. Watson G.N., A new proof of the Rogers-Ramanujan identities, J. London Math. Soc. 4 (1929), 4-9.
  50. Whittaker E.T., Watson G.N., A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996.
  51. Zhang Z., Huang J., The ${C}_n$-Bailey chain, Preprint, 2016.
  52. Zhang Z., Liu Q., $\mathrm{U}(n+1)$ WP-Bailey tree, Ramanujan J. 40 (2016), 447-462.

Previous article  Next article   Contents of Volume 14 (2018)