Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 13 (2017), 084, 21 pages      arXiv:1609.05270

Realization of $U_q({\mathfrak{sp}}_{2n})$ within the Differential Algebra on Quantum Symplectic Space

Jiao Zhang a and Naihong Hu b
a) Department of Mathematics, Shanghai University, Baoshan Campus, Shangda Road 99, Shanghai 200444, P.R. China
b) Department of Mathematics, Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice, East China Normal University, Minhang Campus, Dong Chuan Road 500, Shanghai 200241, P.R. China

Received April 18, 2017, in final form October 20, 2017; Published online October 27, 2017

We realize the Hopf algebra $U_q({\mathfrak {sp}}_{2n})$ as an algebra of quantum differential operators on the quantum symplectic space $\mathcal{X}(f_s;\mathrm{R})$ and prove that $\mathcal{X}(f_s;\mathrm{R})$ is a $U_q({\mathfrak{sp}}_{2n})$-module algebra whose irreducible summands are just its homogeneous subspaces. We give a coherence realization for all the positive root vectors under the actions of Lusztig's braid automorphisms of $U_q({\mathfrak {sp}}_{2n})$.

Key words: quantum symplectic group; quantum symplectic space; quantum differential operators; differential calculus; module algebra.

pdf (459 kb)   tex (24 kb)


  1. Chari V., Xi N., Monomial bases of quantized enveloping algebras, in Recent Developments in Quantum Affine Algebras and Related Topics (Raleigh, NC, 1998), Contemp. Math., Vol. 248, Amer. Math. Soc., Providence, RI, 1999, 69-81, math.QA/9810167.
  2. Fiore G., Realization of $U_q({\rm so}(N))$ within the differential algebra on ${\bf R}^N_q$, Comm. Math. Phys. 169 (1995), 475-500, hep-th/9403033.
  3. Gu H., Hu N., Loewy filtration and quantum de Rham cohomology over quantum divided power algebra, J. Algebra 435 (2015), 1-32.
  4. Heckenberger I., Spin geometry on quantum groups via covariant differential calculi, Adv. Math. 175 (2003), 197-242, math.QA/0006226.
  5. Hu H., Hu N., Double-bosonization and Majid's conjecture, (I): Rank-inductions of $ABCD$, J. Math. Phys. 56 (2015), 111702, 16 pages, arXiv:1505.02612.
  6. Hu N., Quantum divided power algebra, $q$-derivatives, and some new quantum groups, J. Algebra 232 (2000), 507-540, arXiv:0902.2858.
  7. Hu N., Quantum group structure associated to the quantum affine space, Algebra Colloq. 11 (2004), 483-492.
  8. Jantzen J.C., Lectures on quantum groups, Graduate Studies in Mathematics, Vol. 6, Amer. Math. Soc., Providence, RI, 1996.
  9. Kassel C., Quantum groups, Graduate Texts in Mathematics, Vol. 155, Springer-Verlag, New York, 1995.
  10. Klimyk A., Schmüdgen K., Quantum groups and their representations, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997.
  11. Li Y., Hu N., The Green rings of the 2-rank Taft algebra and its two relatives twisted, J. Algebra 410 (2014), 1-35, arXiv:1305.1444.
  12. Lusztig G., Quantum deformations of certain simple modules over enveloping algebras, Adv. Math. 70 (1988), 237-249.
  13. Lusztig G., Introduction to quantum groups, Progress in Mathematics, Vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993.
  14. Majid S., Double-bosonization of braided groups and the construction of $U_q({\mathfrak g})$, Math. Proc. Cambridge Philos. Soc. 125 (1999), 151-192, q-alg/9511001.
  15. Manin Yu.I., Quantum groups and noncommutative geometry, Université de Montréal, Centre de Recherches Mathématiques, Montreal, QC, 1988.
  16. Montgomery S., Smith S.P., Skew derivations and $U_q({\rm sl}(2))$, Israel J. Math. 72 (1990), 158-166.
  17. Ogievetsky O., Differential operators on quantum spaces for ${\rm GL}_q(n)$ and ${\rm SO}_q(n)$, Lett. Math. Phys. 24 (1992), 245-255.
  18. Ogievetsky O., Schmidke W.B., Wess J., Zumino B., Six generator $q$-deformed Lorentz algebra, Lett. Math. Phys. 23 (1991), 233-240.
  19. Ogievetsky O., Schmidke W.B., Wess J., Zumino B., $q$-deformed Poincaré algebra, Comm. Math. Phys. 150 (1992), 495-518.
  20. Radford D.E., Towber J., Yetter-Drinfel'd categories associated to an arbitrary bialgebra, J. Pure Appl. Algebra 87 (1993), 259-279.
  21. Reshetikhin N.Yu., Takhtadzhyan L.A., Faddeev L.D., Quantization of Lie groups and Lie algebras, Leningrad Math. J. 1 (1990), 178-206.
  22. Schauenburg P., Hopf modules and Yetter-Drinfel'd modules, J. Algebra 169 (1994), 874-890.
  23. Wess J., Zumino B., Covariant differential calculus on the quantum hyperplane, Nuclear Phys. B Proc. Suppl. 18 (1990), 302-312.
  24. Woronowicz S.L., Differential calculus on compact matrix pseudogroups (quantum groups), Comm. Math. Phys. 122 (1989), 125-170.
  25. Yetter D.N., Quantum groups and representations of monoidal categories, Math. Proc. Cambridge Philos. Soc. 108 (1990), 261-290.

Previous article  Next article   Contents of Volume 13 (2017)