Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 13 (2017), 077, 15 pages      arXiv:1706.02873

Non-Homogeneous Hydrodynamic Systems and Quasi-Stäckel Hamiltonians

Krzysztof Marciniak a and Maciej Błaszak b
a) Department of Science and Technology, Campus Norrköping, Linköping University, Sweden
b) Faculty of Physics, Division of Mathematical Physics, A. Mickiewicz University, Poznań, Poland

Received June 12, 2017, in final form September 25, 2017; Published online September 28, 2017

In this paper we present a novel construction of non-homogeneous hydrodynamic equations from what we call quasi-Stäckel systems, that is non-commutatively integrable systems constructed from appropriate maximally superintegrable Stäckel systems. We describe the relations between Poisson algebras generated by quasi-Stäckel Hamiltonians and the corresponding Lie algebras of vector fields of non-homogeneous hydrodynamic systems. We also apply Stäckel transform to obtain new non-homogeneous equations of considered type.

Key words: Hamiltonian systems; superintegrable systems; Stäckel systems; hydrodynamic systems; Stäckel transform.

pdf (357 kb)   tex (19 kb)


  1. Błaszak M., Separable systems with quadratic in momenta first integrals, J. Phys. A: Math. Gen. 38 (2005), 1667-1685, nlin.SI/0312025.
  2. Błaszak M., Marciniak K., From Stäckel systems to integrable hierarchies of PDE's: Benenti class of separation relations, J. Math. Phys. 47 (2006), 032904, 26 pages, nlin.SI/0511062.
  3. Błaszak M., Marciniak K., On reciprocal equivalence of Stäckel systems, Stud. Appl. Math. 129 (2012), 26-50, arXiv:1201.0446.
  4. Błaszak M., Marciniak K., Classical and quantum superintegrability of Stäckel systems, SIGMA 13 (2017), 008, 23 pages, arXiv:1608.04546.
  5. Błaszak M., Sergyeyev A., Natural coordinates for a class of Benenti systems, Phys. Lett. A 365 (2007), 28-33, nlin.SI/0604022.
  6. Błaszak M., Sergyeyev A., A coordinate-free construction of conservation laws and reciprocal transformations for a class of integrable hydrodynamic-type systems, Rep. Math. Phys. 64 (2009), 341-354.
  7. Bolsinov A.V., Jovanović B., Noncommutative integrability, moment map and geodesic flows, Ann. Global Anal. Geom. 23 (2003), 305-322, math-ph/0109031.
  8. Boyer C.P., Kalnins E.G., Miller Jr. W., Stäckel-equivalent integrable Hamiltonian systems, SIAM J. Math. Anal. 17 (1986), 778-797.
  9. Dolan P., Kladouchou A., Card C., On the significance of Killing tensors, Gen. Relativity Gravitation 21 (1989), 427-437.
  10. Ferapontov E.V., Integration of weakly nonlinear hydrodynamic systems in Riemann invariants, Phys. Lett. A 158 (1991), 112-118.
  11. Ferapontov E.V., Fordy A.P., Non-homogeneous systems of hydrodynamic type, related to quadratic Hamiltonians with electromagnetic term, Phys. D 108 (1997), 350-364.
  12. Ferapontov E.V., Fordy A.P., Separable Hamiltonians and integrable systems of hydrodynamic type, J. Geom. Phys. 21 (1997), 169-182.
  13. Ferapontov E.V., Fordy A.P., Commuting quadratic Hamiltonians with velocity dependent potentials, Rep. Math. Phys. 44 (1999), 71-80.
  14. Hietarinta J., Grammaticos B., Dorizzi B., Ramani A., Coupling-constant metamorphosis and duality between integrable Hamiltonian systems, Phys. Rev. Lett. 53 (1984), 1707-1710.
  15. Kalnins E.G., Miller Jr. W., Reid G.J., Separation of variables for complex Riemannian spaces of constant curvature. I. Orthogonal separable coordinates for ${\rm S}_{n{\bf C}}$ and ${\rm E}_{n{\bf C}}$, Proc. Roy. Soc. London Ser. A 394 (1984), 183-206.
  16. Marchesiello A., Šnobl L., Winternitz P., Three-dimensional superintegrable systems in a static electromagnetic field, J. Phys. A: Math. Theor. 48 (2015), 395206, 24 pages, arXiv:1507.04632.
  17. Marikhin V.G., On three-dimensional quasi-Stäckel Hamiltonians, J. Phys. A: Math. Theor. 47 (2014), 175201, 6 pages, arXiv:1312.4081.
  18. Marikhin V.G., Sokolov V.V., On quasi-Stäckel Hamiltonians, Russian Math. Surveys 60 (2005), 981-983.
  19. Mishchenko A.S., Fomenko A.T., Generalized Liouville method of integration of Hamiltonian systems, Funct. Anal. Appl. 12 (1978), 113-121.
  20. Rozhdestvenskii B.L., Sidorenko A.D., Impossibility of the ''gradient catastrophe'' for slightly non-linear systems, USSR Comput. Math. Math. Phys. 7 (1967), 282-287.
  21. Sergyeyev A., Błaszak M., Generalized Stäckel transform and reciprocal transformations for finite-dimensional integrable systems, J. Phys. A: Math. Theor. 41 (2008), 105205, 20 pages, arXiv:0706.1473.
  22. Tsarëv S.P., The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method, Math. USSR-Izv. 37 (1991), 397-419.

Previous article  Next article   Contents of Volume 13 (2017)